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BOUNDED SOLUTIONS TO NONLINEAR TRIANGULAR SYSTEMS OF
DISCRETE EQUATIONS

Jaromı́r Baštinec, Josef Diblı́k, Zuzana Piskořová
Brno University of Technology,

FEEC, Technická 10, 616 00 Brno, Czech Republic
bastinec@feec.vutbr.cz, diblik@feec.vutbr.cz, xpisko01@stud.feec.vutbr.cz

Abstract: A nonlinear triangular system of discrete equations

ui(k + 1) = qi(k)
i∏

j=1

u
pij
j (k), i = 1, . . . , n,

is considered where k ∈ {a, a + 1, . . . }, a is a fixed positive integer, qi are real functions and
exponents pij are positive constants. Sufficient conditions are formulated assuring the existence of
at least one solution u = u(k), k ∈ {a, a + 1, . . . } such that its coordinates ui(k), i = 1, . . . , n,
are bounded above and below by given functions. Two convergent sequences of functions are con-
structed such that, with their limits, it is possible to define a set of initial values generating such
solutions.

Keywords: nonlinear triangular system, discrete equation, convergent sequence.

INTRODUCTION

Denote by N (a) the set {a, a + 1, . . . }, where a is a fixed positive integer. In the paper we study
the following nonlinear triangular systems of discrete equations

u1(k + 1) = q1(k)u
p11
1 (k), (1)

u2(k + 1) = q2(k)u
p21
1 (k)up22

2 (k), (2)
u3(k + 1) = q3(k)u

p31
1 (k)up32

2 (k)up33
3 (k), (3)

...
ui(k + 1) = qi(k)u

pi1
1 (k)upi2

2 (k)upi3
3 (k) . . . upii

i (k), (4)
...

un(k + 1) = qn(k)u
pn1

1 (k)upn2

2 (k)upn3

3 (k) . . . upni

i (k)u
pn,i+1

i+1 (k) . . . upnn
n (k) (5)

where u = (u1, u2, . . . , un) is a vector of unknown variables, qi : N (a) → (0,∞), i = 1, . . . , n,
are given functions and pij ∈ (0,∞), i = 1, . . . , n, j = 1, 2, . . . , i are given powers of coordi-
nates of unknown variables. By a solution of the system (1)–(5) we mean a vector u = u∗(k) =
(u∗1(k), u

∗
2(k), . . . , u

∗
n(k)) where u∗i : N (a) → R, i = 1, . . . , n such that every equation of the

system is satisfied for all k ∈ N (a) if ui(k) is replaced by u∗i (k), i = 1, . . . , n.
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The system (1)–(5) can be written briefly as

ui(k + 1) = qi(k)
i∏

j=1

u
pij
j (k), k ∈ N (a), i = 1, . . . , n. (6)

In the paper sufficient conditions are found guaranteeing the existence of a nontrivial solution
u(k), k ∈ N (a) of the system (6) such that its coordinates ui(k), i = 1, . . . , n, remain, for every
k ∈ N (a), bounded above and below by given functions. Next, two types of monotone convergent
sequences are constructed such that, with their limits, it is possible to define a set of initial values
generating such solutions. The present paper generalizes some of previous results derived for the
case of a scalar equation and for a system of two equations in [1,2,4] and continues with analysis of
asymptotic behavior of solutions of discrete equations [3]. Throughout the paper we use following
definition - when symbols for products are applied, we define

∏p2
j=p1

. . . := 1 (where by dots a
relevant argument is denoted) whenever, for integers p1 and p2, inequality p1 > p2 holds.

1 EXISTENCE OF SOLUTIONS WITH PRESCRIBED BEHAVIOR

Throughout the paper we assume that functions bi, ci : N (a) → R, i = 1, . . . , n, are given and
satisfy

0 ≤ bi(k) < ci(k), ∀k ∈ N (a), i = 1, . . . , n. (7)

The following theorem provides sufficient conditions for the existence of at least one solution
u(k) = (u1(k), u2(k), . . . , un(k)), k ∈ N (a), to system (6), i = 1, . . . , n, such that its ith coordi-
nate, i = 1, . . . , n satisfies bi(k) < ui(k) < ci(k), k ∈ N (a).

Theorem 1 Let functions bi, ci : N (a) → R, i = 1, 2, . . . , n satisfy inequalities (7). Assume that,
for every k ∈ N (a) and every i = 1, . . . , n,

qi(k)

(
i−1∏
j=1

c
pij
j (k)

)
bpiii (k) < bi(k + 1) (8)

and

qi(k)

(
i−1∏
j=1

b
pij
j (k)

)
cpiii (k) > ci(k + 1). (9)

Then, there exists a solution u(k) = (u1(k), u2(k), . . . , un(k)), k ∈ N (a) to system (6) satisfying

bi(k) < ui(k) < ci(k) ∀k ∈ N (a), i = 1, 2, . . . , n. (10)

We omit the proof referring to methods suggested in [5, 6]. Using [5, Theorem 1] or [6, Theorem
2] the theorem can be proved.
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2 SEQUENCES GENERATING INITIAL VALUES

First, we will construct special monotone and convergent sequences {uics}∞s=0 and {uibs}∞s=0, where
i = 1, . . . , n,, such that, using their limits, sets can be defined of initial values generating solutions
with the behaviour described in Theorem 1 by formula (10) and next, we formulate a test if only
one such solution exists.

Let us explain how to construct the mentioned sequences {uics}∞s=0 and {uibs}∞s=0, i = 1, . . . , n,.
Below we assume that the hypotheses of Theorem 1 hold.

2.1 CONSTRUCTION OF SEQUENCES {uics}∞
s=0 and {uibs}∞

s=0, i = 1, . . . , n

The property of the terms of the sequence {uics}∞s=0, i = 1, . . . , n is the following. For every fixed
s ∈ N (0), the solution of the initial problem

(u1(a), . . . , ui(a)) = (u1cs, . . . , uics), i = 1, . . . , n,

for system (1)–(5) defines a solution u(k) = us(k) = (u1s(k), . . . , uis(k)) such that

uis(a+ s) = ci(a+ s), i = 1, . . . , n. (11)

Similarly, the terms of the sequence {uibs}∞s=0, i = 1, . . . , n are such that the initial problem

(u1(a), . . . , ui(a)) = (u1bs, . . . , uibs), i = 1, . . . , n,

for system (1)–(5) defines a solution u(k) = us(k) = (u1s(k), . . . , uis(k)) such that

uis(a+ s) = bi(a+ s), i = 1, . . . , n. (12)

2.1.1 CONSTRUCTION OF SEQUENCES {u1cs}∞
s=0 and {u1bs}∞

s=0

Now we will construct explicit formulas for the terms of sequences {u1cs}∞s=0, {u1cs}∞s=0. Consider
equation (1). Then its general solution is expressed by the formula

u1(a+ s) =

(
s−1∏
l=0

q
ps−1−l
11

1 (a+ l)

)
u
ps11
1 (a), s = 0, . . . . (13)

Assuming, in accordance with (11), u1s(a+s) = c1(a+s), we express u1(a) from (13), and define

u1cs := u1(a) =

c1(a+ s)

(
s−1∏
l=0

q
ps−1−l
11

1 (a+ l)

)−11/ps11

, s = 0, . . . .

Similarly, expressing u1(a) from formula (13), assuming u1s(a+s) = b1(a+s) by (12) , we define

u1bs := u1(a) =

b1(a+ s)

(
s−1∏
l=0

q
ps−1−l
11

1 (a+ l)

)−11/ps11

, s = 0, . . . .
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Let us prove that the sequence {u1cs}∞s=0 is decreasing and the sequence {u1bs}∞s=0 is increasing.
Simplifying inequality

u1c,s+1 < u1cs, s = 0, . . . , (14)

that is, the inequalityc1(a+ s+ 1)

(
s∏

l=0

q
ps−l
11

1 (a+ l)

)−11/ps+1
11

<

c1(a+ s)

(
s−1∏
l=0

q
ps−1−l
11

1 (a+ l)

)−11/ps11

,

we get
c1(a+ s+ 1) < cp111 (a+ s)q1(a+ s). (15)

This inequality holds for every s = 0, . . . , because it is equivalent with assumption (9) where
i = 1. Due to properties of the functions c1(k), q1(k), k = 0, . . . , and positivity of p11, from
inequality (15) follows inequality (14). Similarly, simplifying inequality

u1b,s+1 > u1bs, s = 0, . . . ,

that is, the inequalityb1(a+ s+ 1)

(
s∏

l=0

q
ps−l
11

1 (a+ l)

)−11/ps+1
11

>

b1(a+ s)

(
s−1∏
l=0

q
ps−1−l
11

1 (a+ l)

)−11/ps11

,

we derive an equivalent inequality

b1(a+ s+ 1) > bp111 (a+ s)q1(a+ s).

The latter inequality holds because it is a variant of (8) where i = 1. Finally, let us show that

u1bs < u1cs, s = 0, . . . . (16)

For s = 0, inequality (16) turns into

u1b0 = b1(0) < c1(0) = u1c0

and is a consequence of (7) where k = 0. Let s > 0. Then the awaited inequalityb1(a+ s)

(
s−1∏
l=0

q
ps−1−l
11

1 (a+ l)

)−11/ps11

<

c1(a+ s)

(
s−1∏
l=0

q
ps−1−l
11

1 (a+ l)

)−11/ps11

immediately implies b1(a + s) < c1(a + s), which is valid due to (7) and vice versa. Therefore,
both sequences {u1cs}∞s=0 and {u1bs}∞s=0 are convergent. Denote their limits as

u∗1b = lim
s→∞

u1bs, u∗1c = lim
s→∞

u1cs.

Obviously, the set
I1 := [u∗1b, u

∗
1c]

is nonempty, since it contains at least one point (in this case u∗1b = u∗1c).
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2.1.2 CONSTRUCTION OF SEQUENCES {u2cs}∞
s=0 and {u2bs}∞

s=0

Let u∗1 ∈ I1 be a fixed point. Then the initial point

(a, u1(a)) = (a, u∗1)

defines a solution u1 = u∗1(k), k = of equation (1), see (13),

u∗1(k) =

(
k−a−1∏
l=0

q
pk−a−1−l
11

1 (a+ l)

)
(u∗1)

ps11 , k = a, . . . . (17)

Consider equation (2) where u1(k) := u∗1(k), that is, the equation

u2(k + 1) = q2(k)(u
∗
1(k))

p21(k)up22
2 (k). (18)

General solution of equation (18) is expressed by the formula (compare with the formula (13))

u2(k) =

(
k−a−1∏
l=0

[q2(a+ l)(u∗1(a+ l))p21 ]p
k−a−1−l
22

)
u
ps22
2 (a), k = a, . . . . (19)

Assuming, in accordance with (11), u2s(a+s) = c2(a+s), we express u2(a) from (19), and define

u2cs := u2(a) =

c2(a+ s)

(
s−1∏
l=0

[q2(a+ l)(u∗1(a+ l))p21 ]p
s−1−l
22

)−11/ps22

, s = 0, . . . .

Similarly, expressing u2(a) from formula (19), assuming u2s(a+ s) = b2(a+ s) by (12), we define

u2bs := u2(a) =

b2(a+ s)

(
s−1∏
l=0

[q2(a+ l)(u∗1(a+ l))p21 ]p
s−1−l
22

)−11/ps22

, s = 0, . . . .

Let us prove that the sequence {u2cs}∞s=0 is decreasing and the sequence {u2bs}∞s=0 is increasing.
Simplifying inequality u2c,s+1 < u2cs, s = 0, . . . , that is, the inequalityc2(a+ s+ 1)

(
s∏

l=0

[q2(a+ l)(u∗1(a+ l))p21 ]p
s−l
22

)−11/ps+1
22

<

c2(a+ s)

(
s−1∏
l=0

[q2(a+ l)(u∗1(a+ l))p21 ]p
s−1−l
22

)−11/ps22

, s = 0, . . . ,

we get
c2(a+ s+ 1) < cp222 (a+ s)q2(a+ s)(u∗1(a+ s))p21 . (20)

This inequality holds for every s = 0, . . . , because solution u∗1(k), k = a, a + 1, . . . , satisfies
inequalities (10) where i = 1, the right-hand side of (20) can be estimated as

cp222 (a+ s)q2(a+ s)(u∗1(a+ s))p21 > cp222 (a+ s)q2(a+ s)(b1(a+ s))p21
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and (20) is valid due to assumption (9) with i = 2 (we do not mention other properties of c2(k),
q2(k), k = 0, . . . , and p22. Similarly, simplifying inequality

u2b,s+1 > u2bs, s = 0, . . . ,

that is, the inequalityb2(a+ s+ 1)

(
s∏

l=0

[q2(a+ l)(u∗1(a+ l))p21 ]p
s−l
22

)−11/ps+1
22

>

b2(a+ s)

(
s−1∏
l=0

[q2(a+ l)(u∗1(a+ l))p21 ]p
s−1−l
22

)−11/ps22

,

we get
b2(a+ s+ 1) > bp222 (a+ s)q2(a+ s)(u∗1(a+ s))p21 . (21)

This inequality holds for every s = 0, . . . , because solution u∗1(k), k = a, a + 1, . . . satisfies
inequalities (10) where i = 1, the right-hand side of (21) can be estimated as

bp222 (a+ s)q2(a+ s)(u∗1(a+ s))p21 < bp222 (a+ s)q2(a+ s)(c1(a+ s))p21

and (21) is valid due to assumption (8) with i = 2 (we do not mention other properties of c2(k),
q2(k), k = 0, . . . , and p22). Finally, let us show that

u2bs < u2cs, s = 0, . . . . (22)

For s = 0, inequality (22) turns into

u2b0 = b2(0) < c2(0) = u2c0

and is a consequence of (7) where k = 0. Let s > 0. Then the awaited inequalityb2(a+ s)

(
s−1∏
l=0

[q2(a+ l)(u∗1(a+ l))p21 ]p
s−1−l
22

)−11/ps22

<

c2(a+ s)

(
s−1∏
l=0

[q2(a+ l)(u∗1(a+ l))p21 ]p
s−1−l
22

)−11/ps22

immediately implies b2(a + s) < c2(a + s), which is valid due to (7) and vice versa. Therefore,
both sequences {u2cs}∞s=0 and {u2bs}∞s=0 are convergent. Denote their limits as

u∗2b = lim
s→∞

u2bs, u∗2c = lim
s→∞

u2cs.

Obviously, the set I2 := [u∗2b, u
∗
2c] is nonempty, since it contains at least one point (in this case

u∗2b = u∗2c). Because we assumed, constructing the sequences {u2cs}∞s=0, {u2bs}∞s=0, that a solution
u∗1(k), k = a, . . . of equation (1), defined by the initial point u∗1 ∈ I1, is fixed, the values of the
above limits depend on u∗1 as well as interval I2. Then we will below indicate this dependence
writing u∗2b = u∗2b(u

∗
1), u

∗
2c = u∗2c(u

∗
1) and

I∗2 := I2(u
∗
1) = [u∗2b(u

∗
1), u

∗
2c(u

∗
1)].
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2.1.3 CONSTRUCTION OF SEQUENCES {u3cs}∞
s=0 and {u3bs}∞

s=0

Let points u∗1 ∈ I1 and u∗2 ∈ I∗2 be fixed. These two points define, by formula (17), solution u∗1(k),
k = a, . . . of equation (1) satisfying inequality (10) with i = 1 and solution of equation (2)

u∗2(k) =

(
k−a−1∏
l=0

[q2(a+ l)(u∗1(a+ l))p21 ]p
k−a−1−l
22

)
(u∗2)

ps22(a), k = a, . . . , (23)

satisfying inequality (10) with i = 2. Consider equation (3) where ui(k) := u∗i (k), i = 1, 2, that is,
the equation

u3(k + 1) = q3(k)(u
∗
1(k))

p31(u∗2(k))
p32up33

3 (k). (24)

General solution of equation (24) is expressed by the formula (compare with formulas (19), (23))

u3(k) =

(
k−a−1∏
l=0

[q3(a+ l)(u∗1(a+ l))p31(u∗2(a+ l))p32 ]p
k−a−1−l
33

)
u
ps33
3 (a), k = a, . . . . (25)

Assuming, in accordance with (11), us3(a+s) = c3(a+s), we express u3(a) from (25), and define

u3cs := u3(a) =

c3(a+ s)

(
s−1∏
l=0

[q3(a+ l)(u∗1(a+ l))p31(u∗2(a+ l))p32 ]p
s−1−l
33

)−11/ps33

where s = 0, . . . . Similarly, expressing u3(a) from formula (25), assuming u3s(a+ s) = b3(a+ s)
by (12), we derive

u3bs := u3(a) =

b3(a+ s)

(
s−1∏
l=0

[q3(a+ l)(u∗1(a+ l))p31(u∗2(a+ l))p32 ]p
s−1−l
33

)−11/ps33

where s = 0, . . . . Let us prove that the sequence {u3cs}∞s=0 is decreasing and the sequence
{u3bs}∞s=0 is increasing. Simplifying inequality

u3c,s+1 < u3cs, s = 0, . . . , (26)

that is, the inequality

c3(a+ s+ 1)

(
s∏

l=0

[q3(a+ l)(u∗1(a+ l))p31(u∗2(a+ l))p32 ]p
s−l
33

)−11/ps+1
33

<

c3(a+ s)

(
s−1∏
l=0

[q3(a+ l)(u∗1(a+ l))p31(u∗2(a+ l))p32 ]p
s−1−l
33

)−11/ps33

, s = 0, . . . .

We get
c3(a+ s+ 1) < cp333 (a+ s)q3(a+ s)(u∗1(a+ s))p31(u∗2(a+ s))p32 . (27)
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This inequality holds for every s = 0, . . . , because solution u∗1(k), k = a, a + 1, . . . , satisfies
inequalities (10) where i = 1, solution u∗2(k), k = a, a + 1, . . . , satisfies inequalities (10) where
i = 2, the right-hand side of (27) can be estimated as

cp333 (a+ s)q3(a+ s)(u∗1(a+ s))p31(u∗2(a+ s))p32

> cp333 (a+ s)q3(a+ s)(b1(a+ s))p31(b2(a+ s))p32

and (27) is valid due to assumption (9) with i = 3 (we do not mention other properties of c3(k),
q3(k), k = 0, . . . , and p33). Similarly, simplifying inequality

u3b,s+1 > u3bs, s = 0, . . . ,

that is, the inequalityb3(a+ s+ 1)

(
s∏

l=0

[q3(a+ l)(u∗1(a+ l))p31(u∗2(a+ l))p32 ]p
s−l
33

)−11/ps+1
33

>

b3(a+ s)

(
s−1∏
l=0

[q3(a+ l)(u∗1(a+ l))p31(u∗2(a+ l))p32 ]p
s−1−l
33

)−11/ps33

, s = 0, . . . ,

we get
b3(a+ s+ 1) > bp333 (a+ s)q3(a+ s)(u∗1(a+ s))p31(u∗2(a+ s))p32 . (28)

This inequality holds for every s = 0, . . . , because solution u∗1(k), k = a, a + 1, . . . satisfies
inequalities (10) where i = 1, solution u∗2(k), k = a, a + 1, . . . satisfies inequalities (10) where
i = 2, the right-hand side of (28) can be estimated as

bp333 (a+ s)q3(a+ s)(u∗1(a+ s))p31(u∗2(a+ s))p32

< bp333 (a+ s)q3(a+ s)(c1(a+ s))p31(c2(a+ s))p32

and (28) is valid due to assumption (8) with i = 3 (we do not mention other properties of c3(k),
q3(k), k = 0, . . . , and p33).

Finally, let us show that
u3bs < u3cs, s = 0, . . . . (29)

For s = 0, inequality (29) turns into

u3b0 = b3(0) < c3(0) = u3c0

and it is a consequence of (7) where k = 0. Let s > 0. Then, the awaited inequalityb3(a+ s)

(
s−1∏
l=0

[q3(a+ l)(u∗1(a+ l))p31(u∗2(a+ l))p32 ]p
s−1−l
33

)−11/ps33

<

c3(a+ s)

(
s−1∏
l=0

[q3(a+ l)(u∗1(a+ l))p31(u∗2(a+ l))p32 ]p
s−1−l
33

)−11/ps33
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immediately implies b3(a+s) < c3(a+s) which is valid due to (7) and vice versa. Therefore, both
sequences {u3cs}∞s=0 and {u3bs}∞s=0 are convergent. Denote their limits as

u∗3b = lim
s→∞

u3bs, u∗3c = lim
s→∞

u3cs.

Obviously, the set I3 := [u∗3b, u
∗
3c] is nonempty, since it contains at least one point (in this case

u∗3b = u∗3c).
Because we assumed, constructing the sequences {u3cs}∞s=0, {u3bs}∞s=0, that a solution u∗1(k),

k = a, . . . , of equation (1), defined by the initial point u∗1 ∈ I1, is fixed and a solution u∗2(k),
k = a, . . . , of equation (2), defined by the initial point u∗2 ∈ I∗2 , is fixed, the values of the above
limits depend on u∗1, u

∗
2 as well as the interval I3. Then, we will below indicate this dependence

and we will write
u∗3b = u∗3b(u

∗
1, u
∗
2), u∗3c = u∗3c(u

∗
1, u
∗
2)

and
I∗3 := I3(u

∗
1, u
∗
2) = [u∗3b(u

∗
1, u
∗
2), u

∗
3c(u

∗
1, u
∗
2)].

2.1.4 CONSTRUCTION OF SEQUENCES {uics}∞
s=0 and {uibs}∞

s=0, i = 4, . . . , n

Let n ≥ 4 and let an index j ∈ {3, n − 1} be fixed. By induction, assume that solutions u∗i (k),
k = a, . . . , i = 1, . . . , j, of equations (1)–(4) are constructed by the above formulated approach
and satisfy inequalities (10) where i = 1, . . . , j. Assume as well that these solutions are determined
by initial values u∗i (a) = u∗i , i = 1, . . . , j, where u∗i ∈ I∗i , i = 1, . . . , j, I∗1 := I1 and

I∗s = Is(u
∗
1, u
∗
2, . . . , u

∗
s−1) = [u∗sb(u

∗
1, u
∗
2 . . . , u

∗
s−1), u

∗
sc(u

∗
1, u
∗
2 . . . , u

∗
s−1)], s = 2, . . . , j.

Consider equation (4) where i = j + 1 and ui = u∗i (k), k = a, . . . , i = 1, . . . , j are solutions of
equations (1)–(4) mentioned above, that is the equation

uj+1(k + 1) = qj+1(k)(u
∗
1(k))

pj+1,1 . . . (u∗j(k))
pj+1,ju

pj+1,j+1

j+1 (k). (30)

General solution of equation (30) is expressed by the formula (compare with formulas (19), (23)
(25))

uj+1(k) =

(
k−a−1∏
l=0

[qj+1(a+ l)(u∗1(a+ l))pj+1,1 . . . (u∗j(a+ l))pj+1,j ]p
k−a−1−l
j+1,j+1

)
u
psj+1,j+1

j+1 (a) (31)

where k = a, . . . . Assuming, in accordance with (11), us,j+1(a + s) = cj+1(a + s), we express
uj+1(a) from (31), and define

uj+1,cs := uj+1(a)

=

cj+1(a+ s)

(
s−1∏
l=0

[qj+1(a+ l)(u∗1(a+ l))pj+1,1 . . . (u∗j(a+ l))pj+1,j ]p
s−1−l
j+1,j+1

)−11/psj+1,j+1
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where s = 0, . . . . Similarly, expressing uj+1(a) from formula (31), assuming uj+1,s(a + s) =
bj+1(a+ s) by (12), we derive

uj+1,bs := uj+1(a)

=

bj+1(a+ s)

(
s−1∏
l=0

[qj+1(a+ l)(u∗1(a+ l))pj+1,1 . . . (u∗j(a+ l))pj+1,j ]p
s−1−l
j+1,j+1

)−11/psj+1,j+1

where s = 0, . . . . Let us prove that the sequence {uj+1,cs}∞s=0 is decreasing and the sequence
{uj+1,bs}∞s=0 is increasing. Simplifying inequality uj+1,c,s+1 < uj+1,cs, s = 0, . . . , that is, the
inequalitycj+1(a+ s+ 1)

(
s∏

l=0

[qj+1(a+ l)(u∗1(a+ l))pj+1,1 . . . (u∗j(a+ l))pj+1,j ]p
s−l
j+1,j+1

)−11/ps+1
j+1,j+1

<

cj+1(a+ s)

(
s−1∏
l=0

[qj+1(a+ l)(u∗1(a+ l))pj+1,1 . . . (u∗j(a+ l))pj+1,j ]p
s−1−l
j+1,j+1

)−11/psj+1,j+1

where s = 0, . . . , we get

cj+1(a+ s+ 1) < c
pj+1,j+1

j+1 (a+ s)qj+1(a+ s)(u∗1(a+ s))pj+1,1 . . . (u∗j(a+ s))pj+1,j . (32)

We show that this inequality holds for every s = 0, . . . , because solution u∗1(k), k = a, a + 1, . . . ,
satisfies inequalities (10) where i = 1, solution u∗2(k), k = a, a+ 1, . . . , satisfies inequalities (10),
where i = 2, etc. and solution u∗j(k), k = a, a + 1, . . . , satisfies inequalities (10) where i = j.
Then, the right-hand side of (32) can be estimated as

c
pj+1,j+1

j+1 (a+ s)qj+1(a+ s)(u∗1(a+ s))pj+1,1 . . . (u∗j(a+ s))pj+1,j

> c
pj+1,j+1

j+1 (a+ s)qj+1(a+ s)(b1(a+ s))pj+1,1 . . . (bj(a+ s))pj+1,j

and (32) is valid due to assumption (9) with i = j + 1 (we do not mention other properties of
cj+1(k), qj+1(k), k = 0, . . . , and pj+1,j+1). Similarly, simplifying inequality

uj+1,b,s+1 > ujbs, s = 0, . . . ,

that is, the inequalitybj+1(a+ s+ 1)

(
s∏

l=0

[qj+1(a+ l)(u∗1(a+ l))pj+1,1 . . . (u∗j(a+ l))pj+1,j ]p
s−l
j+1,j+1

)−11/ps+1
j+1,j+1

>

bj+1(a+ s)

(
s−1∏
l=0

[qj+1(a+ l)(u∗1(a+ l))pj+1,1 . . . (u∗j(a+ l))pj+1,j ]p
s−1−l
j+1,j+1

)−11/psj+1,j+1
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where s = 0, . . . , we get

bj+1(a+ s+ 1) > b
pj+1,j+1

j+1 (a+ s)qj+1(a+ s)(u∗1(a+ s))pj+1,1 . . . (u∗j(a+ s))pj+1,j . (33)

This inequality holds for every s = 0, . . . , because solution u∗1(k), k = a, a + 1, . . . , satisfies
inequalities (10) where i = 1, solution u∗2(k), k = a, a + 1, . . . , satisfies inequalities (10) where
i = 2, etc. and solution u∗j(k), k = a, a + 1, . . . , satisfies inequalities (10) where i = j. The
right-hand side of (33) can be estimated as

b
pj+1,j+1

j+1 (a+ s)qj+1(a+ s)(u∗1(a+ s))pj+1,1 . . . (u∗j(a+ s))pj+1,j

< b
pj+1,j+1

j+1 (a+ s)qj+1(a+ s)(c1(a+ s))pj+1,1 . . . (cj(a+ s))pj+1,j

and (33) is valid due to assumption (8) with i = j + 1 (we do not mention other properties of
bj+1(k), qj+1(k), k = 0, . . . , and pj+1,j+1). Finally, let us show that

uj+1,bs < uj+1,cs, s = 0, . . . . (34)

For s = 0, inequality (34) turns into

uj+1,b0 = bj+1(0) < cj+1(0) = uj+1,c0

being a consequence of (7) where k = 0. Let s > 0. Then, the awaited inequalitybj+1(a+ s)

(
s−1∏
l=0

[qj+1(a+ l)(u∗1(a+ l))pj+1,1 . . . (u∗j(a+ l))pj+1,j ]p
s−1−l
j+1,j+1

)−11/psj+1,j+1

<

cj+1(a+ s)

(
s−1∏
l=0

[qj+1(a+ l)(u∗1(a+ l))pj+1,1 . . . (u∗j(a+ l))pj+1,j ]p
s−1−l
j+1,j+1

)−11/psj+1,j+1

immediately implies bj+1(a+s) < cj+1(a+s), which is valid due to (7) and vice versa. Therefore,
both sequences {uj+1,cs}∞s=0 and {uj+1,bs}∞s=0 are convergent. Denote their limits as

u∗j+1,b = lim
s→∞

uj+1,bs, u∗j+1,c = lim
s→∞

uj+1,cs.

Obviously, the set Ij+1 := [u∗j+1,b, u
∗
j+1,c] is nonempty, since it contains at least one point (in this

case u∗j+1,b = u∗j+1c).
Because we assumed, constructing the sequences {uj+1,cs}∞s=0, {uj+1,bs}∞s=0, that a solution

u∗1(k), k = a, . . . , of equation (1), defined by the initial point u∗1 ∈ I1, is fixed and a solution
u∗2(k), k = a, . . . , of equation (2), defined by the initial point u∗2 ∈ I∗2 , etc. and solution u∗j(k),
k = a, a + 1, . . . , of equation (4) where j = i, defined by the initial point u∗j ∈ Ij , is fixed, the
values of above limits depend on u∗1, u

∗
2, . . . , uj∗ , as well as the interval Ij+1. Then we will below

indicate this dependence writing

u∗j+1,b = u∗j+1,b(u
∗
1, u
∗
2, . . . , uj∗), u∗j+1,c = u∗j+1,c(u

∗
1, u
∗
2, . . . , uj∗) (35)

and
I∗j+1 := Ij+1(u

∗
1, u
∗
2, , . . . , uj∗) = [u∗j+1,b(u

∗
1, u
∗
2, . . . , uj∗), u

∗
j+1,c(u

∗
1, u
∗
2, . . . , uj∗)]. (36)

The process of constructing the sequences will be terminated if j = n−1. Note that formulas (35),
(36) hold (due to constructions in parts 2.1.1–2.1.4) for every j = 0, . . . , n− 1.
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2.2 FINAL RESULTS

The proof of the following Theorem 2 and Theorem 3 follow directly from the properties of se-
quences constructed in parts 2.1.1–2.1.4. Therefore, we omit them.

Theorem 2 Let the hypotheses of Theorem 1 hold. Then, every initial point (a, u∗1, u
∗
2, . . . , u

∗
n)

where
u∗i ∈ I∗i , i = 1, 2, . . . , n

and intervals I∗i are computed by formula (36) where j = 0, . . . , n − 1, defines a solution of the
system (6) satisfying inequalities (10).

Theorem 3 Let the hypotheses of Theorem 1 hold. If, moreover,

lim
s→∞

(cj(a+ s))1/p
s
jj − (bj(a+ s))1/p

s
jj(

s−1∏
l=0

[qj(a+ l)(b1(a+ l))pj,1 . . . (bj−1(a+ l))pj,j−1 ]p
s−1−l
jj

)1/psjj
= 0,

j = 1, . . . , n, then there exists a unique solution of the system (6), satisfying inequalities (10).

3 EXAMPLE

Let n = 3 and let a particular case of system (6)

u1(k + 1) =
k2

k + 1
u2
1(k), (37)

u2(k + 1) =
k4

k + 1
u2
1(k)u

2
2(k), (38)

u3(k + 1) =
k6

k + 1
u2
1(k)u

2
2(k)u

2
3(k) (39)

be specified where qi(k) = k2i/(k + 1), i = 1, 2, 3, a = 1 and pij = 2, i, j = 1, 2, 3, j ≤ i. Set

b1(k) =
1

2k
, b2(k) =

1

5k
, b3(k) =

1

200k

and
c1(k) =

2

k
, c2(k) =

5

k
, c3(k) =

200

k
.

Let us verify inequalities (8) and (9). For i = 1 we have

q1(k)b
2
1(k) =

k2

k + 1
· 1

4k2
=

1

4(k + 1)
<

1

2(k + 1)
= b1(k + 1)

and

q1(k)c
2
1(k) =

k2

k + 1
· 4
k2

=
4

(k + 1)
>

2

(k + 1)
= c1(k + 1).
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For i = 2 we obtain

q2(k)c
2
1(k)b

2
2(k) =

k4

k + 1
· 4
k2
· 1

25k2
=

4

25(k + 1)
<

1

5(k + 1)
= b2(k + 1)

and

q2(k)b
2
1(k)c

2
2(k) =

k4

k + 1
· 1

4k2
· 25
k2

=
25

4(k + 1)
>

5

(k + 1)
= c2(k + 1).

Finally, for i = 3, we derive

q3(k)c
2
1(k)c

2
2(k)b

2
3(k) =

k6

k + 1
· 4
k2
· 25
k2
· 1

40000k2
=

1

400(k + 1)
<

1

200(k + 1)
= b3(k + 1)

and

q3(k)b
2
1(k)b

2
2(k)c

2
3(k) =

k6

k + 1
· 1

4k2
· 1

25k2
· 40000

k2
=

400

k + 1
>

200

(k + 1)
= c3(k + 1).

All assumptions of Theorem 1 are fulfilled. Therefore the system (37)–(39) has a nontrivial solution
u = u∗(k) = (u∗1(k), u

∗
2(k), u

∗
3(k)) where u∗i : N (1)→ R, i = 1, 2, 3 and

1

2k
< u∗1(k) <

2

k
,

1

5k
< u∗2(k) <

5

k
,

1

200k
< u∗3(k) <

200

k
.

CONCLUSIONS

In this paper we study the nonlinear triangular system (6). Conditions guaranted existence of a
solution bounded from below and from above are formulated in Theorem 1. Moreover, Theorem 2
indicates how the initial values determinig such solutions can be found. Theorem 3 brings sufficient
conditions for the existence only one such a solution. It is an open problem if results of the paper
can be enlarged to more general nonlinear systems, for example, to a system

ui(k + 1) = qi(k)
n∏

j=1

u
pij
j (k), k ∈ N (a), i = 1, . . . , n

being more general than the system (6).
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Abstract: The article contains a few topics for motivation in the Mathematics teaching which 

are closely related to the possibilities of students´ research approach. Firstly, there are 

described several examples of mathematical spirals including historical remarks, further there 

are given these spirals´ equations in polar coordinates and in parametric formulations as well. 

In the conclusion there are derived the formulas for their lengths with the help of the integral 

calculus. 

 

Keywords: Length of curve, definite integral, spiral of Archimedes, logarithmic spiral, 

hyperbolic spiral, Fermat spiral. 

 

 

INTRODUCTION 

 

The notion “spiral” is used quite often in various meanings in the common life. However, the 

general public or students not concerned with mathematics could be surprised that the notion 

“spiral” appears in mathematics as well. There are series of mathematical spirals some of which 

will be dealt with in this article. At technical universities, this topic is discussed in detail within 

technical curves. Nevertheless, our students, future Mathematics teachers, hardly encounter the 

topic of spirals and technical curves during their study and thus this issue could play a 

motivational role while teaching Mathematics. Let us note that a precise formal description of 

mathematical curves is rather complicated and often requires practical knowledge of polar or 

parametric coordinates. Therefore, the study of spirals could help to introduce these coordinates 

to students and further encourage their deeper interest in mathematical analysis and differential 

geometry. Let us remind some necessary theoretical knowledge (See [1], [4], [7]). 

 

Let y = f(x) be a continuous real function on the interval a, b. Then the graph of this function 

is a curve. The length of this curve is defined by an integral dx
dx

dy
1

b

a

2

 







+ .  

If this curve is defined in polar coordinates by an equation r = f() pro         , then its 

length is determined by an integral 






d
d

dr
r

2
2

 







+ . 

If the curve is defined parametrically, i.e. x =  (t), y =  (t), where t is a real number from the 

interval a, b, the length of this curve is determined by an integral dt
dt

d

dt

d
b

a

22

 







+







 
.  

Generally, we can say that spirals are plane curves created by a point which performs the given 

movement on a line which is rotating evenly around its fixed point. 
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1. ARCHIMEDEAN SPIRAL 

 

In his treatise “On spirals” (about 225 BC) Archimedes describes the origin of this curve 

approximately as follows ([12], pg. 154): “If a straight line of which one extremity remains 

fixed be made to revolve at a uniform rate in a plane until it returns to the position from which 

it started, and if, at the same time as the straight line revolves, a point moves at a uniform rate 

along the straight line, starting from the fixed extremity, the point will describe a spiral in the 

plane.“ This definition gives the oldest example when the curve is created as the result of a dual 

movement of a point (See Fig. 1, taken from [9]).  

 
Fig. 1: Archimedean spiral 

Source: [9] 

 

Archimedean spirals can commonly be seen around us ([8]), for example in compressed springs, 

side edgings of rolled up carpets, on the rolled up rope or decorative spirals of jewellery. Among 

technical usages of Archimedean spirals, we can mention the transformation of the rotating 

movement to the linear one at sewing machines. Archimedean spiral appears at various 

mechanisms in machinery such as Archimedean screw. Based on this principle are constructed 

drills and screws. From the mathematical point of view, the most precise definition of 

Archimedean spiral is as a plane curve whose radius grows linearly with the angle. It can also 

be described as a trajectory of a point which moves equally along a half-line from its origin in 

point O, while the half-line rotates equally around the point O ([9]). The point O is a pole or the 

origin of a spiral. It is possible to prove that the ray coming from the origin of the spiral cuts 

the spiral in points whose distances from the pole form an arithmetic sequence. 

In polar coordinates Archimedean spiral can be represented by an equation ([1], [5]) 

r = a  , where a  R, a    0,   R,     0. 

It is more convenient to use the parametrical representation. For every point X = [x, y] of the 

spiral there applies 

x = r cos t = at cos t, y = r sin t = at sin t, where t is a parameter, t  R, t   0. 

The length of Archimedean spiral is finite and we can calculate it using the formula for the 

length of a curve in polar coordinates. We will calculate the length s of a spiral from the origin 

O = [0, 0] to a point P of a spiral whose location is given by polar coordinates r, . There applies

d

dr
 = a, after modification 
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This integral is quite difficult and while solving it students have to be patient and concentrated. 

Let P = [r, ], Q = [s, ],   , be two points of Archimedean spiral. It is possible to derive 

that for the area S of a sector POQ there applies S = ( )33
2

6

a
 −  . In conclusion, let us note 

that all values of angles in the above relations have to be expressed in radian measures. The 

given formulas including details can be found in [1].  

 

 

2. LOGARITHMIC SPIRAL 

 

Logarithmic spiral can be depicted verbally by several equivalent ways. In [11] there is given 

that a logarithmic spiral is a plane curve whose radius grows exponentially with the angle. In 

the book [1] we can find a description of a logarithmic spiral as a curve which intersects all 

half-lines leading from its origin with a constant angle . There are two important points in this 

spiral: the pole and the origin of this spiral ([11]). The pole is the point around which the spiral 

“weaves”. For the spiral in the basic shape (without translation) it is the point [0, 0], i.e. the 

origin of the coordinate system. The origin of the spiral is the point from which the spiral is 

drawn. In the basic shape it is the point [a, 0]. The parameter a comes from mathematical 

representation of the logarithmic spiral ([11]). In the polar system of coordinates the logarithmic 

spiral can be represented by an equation  

r = a e b, 

or in the equivalent form by an equation 

  = 
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b
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 , 

where a, b are positive real numbers and e is Euler’s number. The ray coming out from the pole 

intersects the spiral in points whose distance from the pole create a geometric progression. The 

line joining the pole of the spiral with any of its point intersects the logarithmic spiral always 

under the same angle. Therefore, the logarithmic spiral is also called an equiangular spiral (René 

Descartes. 1638).  The following picture shows an example of the logarithmic spiral (See [11]). 

 
Fig. 2: Logarithmic spiral 

Source: [11] 

 

Let us note where we can meet this spiral in real life (See [1], [5] and [11]). The logarithmic 

spiral is used in the technical practice (rotating knives, cogwheels etc.) and at seamanship in 
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connection with loxodrome which is the most convenient curve for sailing and whose projection 

to the stereographic net is the logarithmic spiral. They also appear quite often in the nature; 

more precisely, in some natural phenomena there appear formations which resemble 

logarithmic spirals. Let us give some examples (taken from [5] and [11]): 

▪ The trajectory on which birds of prey (hawks) approach their prey.The equiangularity of 

this spiral allows them to observe the pray under the constant angle. 

▪ The trajectory on which insects approach the source of light. 

▪ The arms of spiral galaxies. Galaxy Milky Way has several spiral arms and each arm 

corresponds roughly to a logarithmic spiral with an approximite angle of 12 degrees. 

▪ Cloud belts created in the centres of tropical cyclones. 

▪ A range of biological formations, e.g. mollusk shells, horns, elephant tusks, and spider 

webs. 

▪ The arrangement of sunflower seeds. 

▪ Double helical spiral of DNA. 

 

The first person to mention a logarithmic spiral was a French mathematician René Descartes. 

Independently on Descartes, the logarithmic spiral was studied by Evangelist Torricelli, who 

set the formula for the length of the curve. Later, the spiral was studied thoroughly by Jacob 

Bernoulli. In this context, interesting information is given by an article [8]. Bernoulli devoted 

a great amount of time to the problem of spirals and wrote a treatise called Spiral mirabilis (The 

marvelous spiral). He studied the spiral many hours and finally understood that this spiral’s 

qualities are nearly magic. Therefore, he wanted such a spiral engraved on his headstone. 

Unfortunately, by error, an Archimedean spiral was placed there instead of the logarithmical 

one, which he loved so much. 

Another interesting fact dealing with the logarithmic spiral is its connection with the golden 

ratio. The definition of the golden ratio and its properties can be found e.g. in [13]. In the article 

[6] there is stated the following: A golden rectangle is a rectangle where the ratio of its length 

to its width equals to the golden ratio. If we cut away a square from this rectangle, we will get 

a rectangle, which is also golden. If we continue in cutting away in the same way, we will 

always get a golden rectangle. If we draw into any pair of the mother rectangle and the daughter 

rectangle two diagonals according to the following picture (See [6]), all these diagonals will 

intersect in one point. The series of the decreasing rectangles converge to this point.  

 
 

Fig. 3: Golden rectangles and their diagonals 

Source: [6] 

 

If we now draw a curve joining the points which divide the longer sides of the decreasing golden 

rectangles in the golden ratio (See Fig. 4), we will get a logarithmic spiral. The above-

mentioned point is the pole of the spiral.  
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Fig. 4: Logarithmic spiral and a golden ratio 

Source: [6] 

 

Now we will deal with the logarithmic spiral from the mathematical point of view (according 

to [1] and [5]). 

In the polar system of coordinates the logarithmic spiral can be expressed by the equation               

r = a eb. The equation of the logarithmic spiral could be also written parametrically. For the 

coordinates of any point X = [x, y] of a logarithmic spiral there applies (for this purpose we will 

denote the angle   more conveniently as t)  

X = r cos t = a ebt cos t, y = r sin t = a ebt sin t. 

Let us note that for values b nearing zero, the spiral will near a circle. Let us admit the case b 

= 0, then the spiral turns into a circle. The change of the length of the radius vector can be 

expressed by a derivation 

babe
dt

dr
=  = br. 

The growth of the spiral depends only on the value b, while the parameter a determines the 

distance of the origin of the spiral from its pole. Let us work out the length s of the logarithmic 

spiral from its origin P = [a, 0] to any of its point Q = [r, ]. The desired length s will be 

calculated with the use of the following integral (the details of the computation are omitted): 
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Similarly, we can derive the formula for the length of the logarithmic spiral between two points 

P =[r, ] and Q =[s, ] (without detriment to generality, let us assume   , therefore s   r 

too): 

s = 
b

b1 2+
 (s − r). 

 

 

3. HYPERBOLIC SPIRAL 

 

Hyperbolic spiral was discovered by Pierre Varignon in 1704. It was further studied by Johann 

Bernoulli between 1710 and 1713 and also by Roger Cotes in 1722 ([5]). Hyperbolic spiral is a 

plane curve for which the product of the radius vector r and argument  (i.e. the product of 

polar coordinates) is constant (See [1]). It is inverse to Archimedean spiral, i.e. in polar 

coordinates it has the equation 
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r = 


a
 , a  R, a  0,   0. 

 

The asymptotic point (called also a pole) is in its basic position in the Cartesian coordinate 

system the origin O =[0, 0]. The spiral starts in the infinite distance from its pole, approaches 

it and winds around it in tighter loops. See the following picture (taken from [10]).   

 

Fig. 5: Hyperbolic spiral  

Source: [10] 

 

The shape of the hyperbolic spiral can be shown more clearly if we rewrite the equation to the 

form r = a. Since the number a is a positive parameter, after its fixed selection we can write 

r = const. If the values of the angle  approach zero, the points of the spiral approach a 

straight line parallel to a polar axis (axis x) whose distance from the polar axis is equal a. The 

straight line y = a is the asymptote of the hyperbolic spiral r =


a
. In the parametric 

formulation the hyperbolic spiral is defined by equations 

   x = tcos
t

a
, y = tsin

t

a
 

where X = [x, y] is an arbitrary point of the hyperbolic spiral and the value of the angle  is 

denoted as t. We will outline the calculation of the length of the hyperbolic spiral arc between 

its two points P =[r, ], Q =[s, ] (without detriment to generality, let us assume that    ). 

At first let us calculate the derivation 
2
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The last integral is very difficult and leads to complicated relations. Therefore, we will not 

provide it here. Those interested could try to solve the indefinite integral dx
x

x1

2

2


+

 and thus 

see how complicated this problem is. We will present the theory necessary for solving the last 

indefinite integral which is a binomial integral (See e.g. an electronic source [14]).  
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Binomial integrals ( ) + dxbxax
pnm , (m, n, p are rational numbers), can be transformed to 

integrals of rational functions if at least one of numbers p
n

1m
,

n

1m
,p +

++
 is an integer. 

a) If p is an integer, then according to the binomial theorem we will expand ( )pnbxa +  to a 

series, we will multiply individual members of the series by mx  and integrate; if the number 

p  is a negative integer, we will find the least common multiple s of the denominators m and n 

and we will introduce the substitution stx = . 

b) If  
n

m 1+
 is an integer, we will use the substitution sn tbxa =+  (s is the denominator of 

fraction p). Depending on the exponent of the integrated function after the substitution, i.e. if 

it is positive or negative, we will choose the further procedure, as is given in a). 

c) If  p
n

m
+

+1
 is an integer, we will rearrange the expression nbxa +  by taking out nx ;we 

will obtain ( ) ( )baxxbxa nnn +=+ − . Then we will use the substitution tbax n =+− . 

If we use the above described theory for calculating the integral dx
x

x1

2

2


+

, we will see that 

with denoting m = − 2, n = 2, p = 
2

1
, a = b = 1, the solved integral is the integral of type c), 

i.e. the most complicated one of the three possible cases. The instruction for its calculation is 

given above, so we will not deal with it in this article further. 

 

 

4. FERMAT SPIRAL 

 

Fermat or parabolic spiral is first mentioned in 1636 in the writing of French mathematician 

Pierre de Fermata (1601–1665) Ad locos planos et solidos lisagoge (The introduction to the 

study of plane and solid curves), see [8]. This spiral is described by an equation 

r2 = a2 , a R, a  0,    0. 

For each positive value of the argument  there exist two corresponding values of the radius 

vector r – the positive and the negative ones. Therefore, the resulting spiral is symmetric about 

the line y = − x and it is depicted in the following picture (taken from [8]). 

 
Fig. 6: Fermat spiral  

Source: [8] 
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Fermat spiral is often described by equation r = a  ; in this case only one half of the spiral is 

drawn. Sometimes it is expressed in the parametric form (X = [x, y] is an arbitrary point of 

Fermat spiral and the value of the angle  is denoted as t ), i.e. 

x = a t  cos t, y = a t  sin t , t  0.  

Both halves of Fermat spiral are drawn in different colours in the following picture (taken from 

[17]). 

 
 

Fig. 7: Fermat spiral with colour differentiation 

Source: [17] 

 
The length of the Fermat spiral between its two points will not be given in this article. The 

reason is following: although we will use the definitional formula r = a   for one half of 

Fermat spiral, after substitution to a general formula s = 






d
d

dr
r
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d
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2
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s

2


+

= . This integral is binomial, but it is not 

one of the three above given cases, when the binomial integral can be transformed into an 

integral of some rational function. Its value can be determined numerically for the given limits, 

but it is not to be mentioned in this article.  

Let us note that Fermat spiral is a special case of spirals of higher orders. Spirals of higher 

orders are spirals with polar equations 

𝑟𝑚 = 𝑎−𝑚 ∙
𝜑

2𝜋
, where a, m are constants. 

Special cases of spirals of higher orders: 

22 ar =                Fermat spiral  

lar 22 −=            Galileo spiral – it represents the trajectory of a mass point which falls freely 

with respect to the rotating Earth 

ap2)ar( 2 =−       parabolic spiral  

Galileo spiral and parabolic spiral will not be dealt with in this article; details can be found e.g. 

in an electronic source [15]. 
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5. LITUUOV SPIRAL 

 

Lituuov spiral was proposed by Cotes in 1722 (lituus means a hook, [15]). Maclaurin used this 

expression in the book Harmonia Mensurarumin in 1722. It is an inverse spiral to Fermat spiral, 

i.e. it is a spiral with an equation r = 


a
, φ > 0. The illustration is in the following picture 

(taken from [16]). 

 

Fig. 8: Lituuov spiral (r  0)  

Source: [16] 
 

In parametric formulation we will determine the coordinates of an arbitrary point of this spiral 

using relations x = 
t

a
cos t, y = 

t

a
sin t, t > 0.  

Sometimes Lituuov spiral is expressed in the shape r2 =


a
. In this case the spiral has two 

branches depending on the sign of number r. In Figure 8 there is the branch for positive r. Both 

branches are depicted in Figure 9 (taken from [17]). 

 

Fig. 9: Lituuov spiral – both branches  

Source: [17] 

 

Because of the difficulty while calculating the finite integral, we will not deal with the length 

of Lituuov spiral between its two points as well. 

 

 

CONCLUSION 

 

If we write the equation of the spiral in the more general form r = a  b, then we will get ([7]): 

for b = 1 Archimedean spiral with the equation r = a , 
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for b = −1 hyperbolic spiral with the equation r =


a
 , (an inverse curve to Archimedean 

spiral), 

for b = 
2

1
 Fermat spiral with the equation r = a  , 

for b = −
2

1
  Lituuov spiral with the equation r = 



a
, (an inverse curve to Fermat spiral). 

Another interesting mathematics area is a theory of sinusoidal spirals (although they are not 

actually spirals). These spirals were at first dealt with by Colin Maclaurin. The sinusoidal 

spiral can be described by one of equivalent equations (it depends on the rotation of the 

coordination system) 

rm = am sin (m), rm = am cos (m), kde m  Q, φ > 0. 

The theory and description of sinusoidal spirals can be the topic of further articles. Therefore 

let us only mention the most often occurring cases. 

For m = 1 it is a circle, for m = 2 it is a lemniscate of Bernoulli,  

for m = − 1 we get a line, for m = − 2 it is a rectangular hyperbola,  

for m = 
2

1
 it is a cardioid and for m = − 

2

1
 it is a parabola. 

A detailed information about these geometric figures and other technical curves as well can be 

found in a synoptic publication [1]. 

The theory of spirals and technical curves forms the part of Mathematics curriculum at technical 

universities where there are a number of theoretical books on this topic (e.g. [3]). At other 

universities, especially while teaching future Mathematics teachers, this theory is not dealt with 

and there is neither suitable nor accessible literature for them. The response to this situation is 

this article whose aim is to supply some examples of accessible literature for them. In 

conclusion, let us again mention that this whole part of Mathematics (with connection to the 

history of Mathematics, mathematical analysis and geometry) can represent a significant 

motivational aspect ([2]). What is more, this topic is not too distant from the secondary school 

Mathematics although it contains some parts from the higher stage. Therefore, while students 

struggle to penetrate this topic, they can devote their energies to studying Mathematics texts, 

especially mathematical analysis. 
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Abstract: The paper presents an alternative technic of calculation volumes of solids of 

revolution, and also a possibility of using the special geometric software GeoGebra 5.0 for 

some applications of them.  
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INTRODUCTION  

 

The contribution follows on from the papers published by the author in the conferences 

AMEE´13 and AMEE´16 where volumes of solids as a topological problems were discussed 

(see [1] , [2], and [3]).  An alternative method of calculating areas and/or volumes was proved 

generally in En there. The method leads to an easier calculation because integrals of n-1 

dimension is used instead of the n-dimensional (in E3 - double integrals instead of the triple 

ones), which is commonly found in conventional examples. 
 
Now we are interesting in special cases of solids of revolution, and also we present a view of 

a possibility, how to use the dynamic geometric software of GeoGebra to calculations and 

demonstrations of them. The case of some closed curves has been published in MITAV 2019 – 

in [4]. Geo-Gebra is very popular also between teachers and students because it provides many 

interesting options for solving examples and demonstrations tasks. The big advantage is also 

that this software is free. 

 

1  CALCULATION VOLUMES USING AN ALTERNATIVE METHOD IN E3 

 

An alternative method of calculating the volume is based of knowledge of the parametric 

description of surface of the body. The problem of parametric descriptions of the surface areas 

of solid is investigated as a problem in the topological sense. There was also proved the formula 

for the calculation of the volume in n-dimensional space for the case that the surface areas are 

the smooth, resp. piecewise smooth areas in the Euclidean space of the corresponding 

dimensions. 

 

Let 𝑋 = [𝑥1, 𝑥2, 𝑥3 ] be point and its Cartensian coordinates in E3, 𝑈 = [𝑢1, 𝑢2 ] the Cartensian 

coordinates of the point in E2,  the bounded closed domain  in E2,  𝑥𝑖(𝑢1, 𝑢2), 𝑖 = 1, 2, 3, 

given functions defined on some domain 𝐎  𝐄𝟐,   𝐎. 

 

Let us suppose that 

 The vector function x(u) has almost everywhere in  the continuous partial derivatives  

 

 𝑥𝑖

 𝑢𝑗
  for i = 1, 2, 3, j = 1, 2; 
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 The rank of the matrix (
 𝑥𝑖

 𝑢𝑗
)

(3× 2)

 is equal to 2 almost everywhere in ; 

 The subset 𝐏𝟎 = {𝑥 ∈ 𝐄𝟑; 𝑥 = 𝑥(𝑢), 𝑢 ∈ } of the set  𝐏 = {𝑥 ∈ 𝐄𝟑; 𝑥 = 𝑥(𝑢), 𝑢 ∈ } 

is a homeomorphic range of the set int  in E3. 

 

Then, the closure W of the set P is the boundary of the 3-dimensional solid in the space E3. The 

volume V =  W of the 3-dimensional solid can be calculated by the formula (see  [1] and [2] ). 

 

 

𝑉 =
1

3
∬ (𝑢) d𝑢1 d𝑢2

      (1) 

 

where 

(𝑢) =
|
|

𝑥1(𝑢) 𝑥2(𝑢) 𝑥3(𝑢)

 𝑥1

 𝑢1

 𝑥2

 𝑢1

 𝑥3

 𝑢1

 𝑥1

 𝑢2

 𝑥2

 𝑢2

 𝑥3

 𝑢2

|
|
.     (2) 

 

 

2 CLASSICAL AND ELLIPTICAL TOROID 

 

 

A toroid is a surface of revolution generated by revolving a circle in E3, about an axis that is 

coplanar with the circle and has no common point with it and has no common point with it 

(Fig. 1 and 2). 

 

 
 

Fig. 1 and Fig. 2 A toroid and a part of a toroid 

 

Parametric equations of the surface are 

 

   𝑥1 = (𝑎 + 𝑟 cos 𝑣) cos 𝑢 

   𝑥2 = (𝑎 + 𝑟 cos 𝑣) sin 𝑢      (3) 

  𝑥3 = 𝑟 sin 𝑣 

   𝑣 ∈ 〈0; 2π〉, 𝑢 ∈ 〈0; 2π〉 
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where r denotes the radius of the rotating circle k (S; r) and a  r is a distance of the centre  

𝑆 =  [𝑎; 0; 0] from the z-axis of rotation. 

Then according to the symmetry, the formula (2) is of the form 

 

 

(𝑢, 𝑣) = |
(𝑎 + 𝑟 cos 𝑣) cos 𝑢 (𝑎 + 𝑟 cos 𝑣) sin 𝑢 𝑟 sin 𝑣

−(𝑎 + 𝑟 cos 𝑣) sin 𝑢 (𝑎 + 𝑟 cos 𝑣) cos 𝑢 0
−𝑟 sin 𝑣 cos 𝑢 −𝑟 sin 𝑣 sin 𝑢 𝑟 cos 𝑣

| =   (4) 

 

 a calculation of the determinant  

 

= 𝑟2sin2𝑣(𝑎 + 𝑟 cos 𝑣)(sin2𝑢 + cos2𝑢) + 𝑟 cos 𝑣 (𝑎 + 𝑟 cos 𝑣)2(cos2𝑢 + sin2𝑢) = 
 

= 𝑟(𝑎 + 𝑟 cos 𝑣)[𝑟sin2𝑢 + cos 𝑣(𝑎 + 𝑟 cos 𝑣)] = 
 

= 𝑟(𝑎 + 𝑟 cos 𝑣)[𝑟sin2𝑢 + 𝑎 cos 𝑣 + 𝑟cos2𝑣] = 
 

= 𝑟(𝑎 + 𝑟 cos 𝑣)(𝑟 + 𝑎 cos 𝑣) = 𝑟(𝑎𝑟 + 𝑟2 cos 𝑣 + 𝑎2 cos 𝑣 + 𝑎𝑟cos2𝑣) = 
 

= 𝑟(𝑎𝑟 + (𝑟2 + 𝑎2) cos 𝑣 + 𝑎𝑟 cos2𝑣) 

 

and the volume is equal to 

 

𝑉 =
4

3
𝑟 ∫ d𝑢 ∫ (𝑎𝑟 + (𝑟2 + 𝑎2) cos 𝑣  cos 𝑣 + 𝑎𝑟 cos2𝑣) d𝑣 =

π

0

𝜋

0
  (5) 

=
4

3
𝑟π [𝑎𝑟𝑣 + (𝑟2 + 𝑎2) sin 𝑣 + 𝑎𝑟 ∙

𝑣 + sin 𝑣  cos 𝑣

2
]

0

𝜋

= 

=
4

3
𝑟π (𝑎𝑟π +

𝑎𝑟π

2
) =

4

3
𝑟2π2

3

2
𝑎 = 2𝑎𝑟2𝜋2 

    
In the case of solids of revolution, we can simplify the formulas (3 - 5). Using the symmetry 

of the toroid, we can calculate the volume of only that part which lies above the plane (xy). 

Parametric equations of the semi-surface are: 

 
   𝑥1 = 𝑓(𝑢) cos 𝑣 = 𝑢 cos 𝑣 

 𝑥2 = 𝑓(𝑢) sin 𝑣 = 𝑢 sin 𝑣      (6) 

𝑥3 = 𝑔(𝑢) = √𝑟2 − (𝑢 − 𝑎)2 

𝑣 ∈ 〈0; 2π〉, 𝑢 ∈ 〈𝑎 − 𝑟; 𝑎 + 𝑟〉 

 

The determinant: 

 

    (𝑢, 𝑣) = |

𝑓(𝑢) cos 𝑣 𝑓(𝑢) sin 𝑣 𝑔(𝑢)

𝑓 (𝑢) cos 𝑣 𝑓 (𝑢) sin 𝑣 𝑔 (𝑢)

−𝑓(𝑢) sin 𝑣 𝑓(𝑢) cos 𝑣 0

| =   (7) 

35



 

= 𝑔(𝑢)[𝑓 (𝑢)𝑓(𝑢) cos2 𝑣 + 𝑓(𝑢)𝑓  (𝑢) sin2 𝑣] − 𝑔 (𝑢)[𝑓2(𝑢) cos2 𝑣 + 𝑓2(𝑢) sin2 𝑣] = 

 

= 𝑔(𝑢)𝑓 (𝑢)𝑓(𝑢) − 𝑔 (𝑢)𝑓2(𝑢) = 𝑓(𝑢)𝑓 (𝑢)𝑔(𝑢) − 𝑔 (𝑢)𝑓2(𝑢) 

 
        

In this particular case, we have got 

 

(𝑢) = 𝑢√𝑟2 − (𝑢 − 𝑎)2 +
(𝑢−𝑎)𝑢2

√𝑟2−(𝑢−𝑎)2
    (8) 

 

The volume:  

    𝑉 = 2
2𝜋

3
∫ (𝑢) d𝑢 =  

𝑟+𝑎

𝑟−𝑎
      (9) 

 

 

=
4π

3
[
3𝑎𝑟2

2
 arcsin 

𝑢 − 𝑎

𝑟
− (

𝑎2

2
+ 𝑟2 −

𝑎𝑢

2
) √𝑟2 − (𝑢 − 𝑎)2]

𝑎=𝑟

𝑎+𝑟

= ⋯ = 2𝑎𝑟2𝜋2 

 

 

3  VOLUME OF ELLIPTICAL RINGS 

 

An elliptical ring with a circular cross-section is a surface formed by moving a circle k (S,r) 

in the direction of an elliptical orbit that is perpendicular to the circle k (Fig. 3). 

 

Fig. 3 A part of an elliptical ring with a circular cross-section 

 

As a circle  ,k S r  can be taken as a special case of an ellipse if c d r  , we can use the 

previous results, i.e.: 

 

Parametric equations of the surface: 

 

   𝑥1 = (𝑎 + 𝑟 cos 𝑣) cos 𝑢 

   𝑥2 = (𝑏 + 𝑟 cos 𝑣) sin 𝑢      (10) 

  𝑥3 = 𝑟 sin 𝑣 

36



    𝑣 ∈ 〈0; 2π〉, 𝑢 ∈ 〈0; 2π〉 

The determinant: 

 

 

(𝑢, 𝑣) = |
(𝑎 + 𝑟 cos 𝑣) cos 𝑢 (𝑏 + 𝑟 cos 𝑣) sin 𝑢 𝑟 sin 𝑣

−(𝑎 + 𝑟 cos 𝑣) sin 𝑢 (𝑏 + 𝑟 cos 𝑣) cos 𝑢 0
−𝑟 sin 𝑣 cos 𝑢 −𝑟 sin 𝑣 sin 𝑢 𝑟 cos 𝑣

| = ⋯ =  (11) 

 

 

= 𝑎𝑏𝑟 cos 𝑣 + 𝑟2(𝑎 + 𝑏) cos2𝑣 + 𝑎𝑟2 sin2𝑢 sin2𝑣 + 𝑟3sin2𝑣 cos 𝑣 + 𝑏𝑟2sin2𝑣 cos2𝑢.    
         

and the volume is equal to 

 

𝑉 =
1

3
∫ ∫ (𝑢) d𝑢 d𝑣 = (𝑎 + 𝑏) 𝑟2𝜋22π

0

2𝜋

0
.   (12) 

An elliptical ring with an elliptical cross-section is a surface formed by moving an ellipse 

e (S, c, d) in the direction of an elliptical orbit that is perpendicular to the ellipse e.  

Parametric equations of the surface: 

 

 𝑥1 = (𝑎 + 𝑐 cos 𝑣) cos 𝑢 

 𝑥2 = (𝑏 + 𝑐 cos 𝑣) sin 𝑢      (13) 

𝑥3 = 𝑑 sin 𝑣 

𝑣 ∈ 〈0; 2π〉, 𝑢 ∈ 〈0; 2π〉 

 

where a and b denote the semi-axes of the trajectory of the moving ellipse e (S, c, d). We 

suppose that the surface is not intersecting, i. e. min (a, b)  c. 

In particular case, the formula (2) takes the form 

 

(𝑢, 𝑣) = |
(𝑎 + 𝑐 cos 𝑣) cos 𝑢 (𝑏 + 𝑐 cos 𝑣) sin 𝑢 𝑑 sin 𝑣

−(𝑎 + 𝑐 cos 𝑣) sin 𝑢 (𝑏 + 𝑐 cos 𝑣) cos 𝑢 0
−𝑐 sin 𝑣 cos 𝑢 −𝑐 sin 𝑣 sin 𝑢 𝑑 cos 𝑣

| = ⋯ =  (14) 

 

 

= 𝑎𝑏𝑐 cos 𝑣 + 𝑐𝑑(𝑎 + 𝑏) cos2𝑣 + 𝑎𝑐𝑑 sin2𝑢 sin2𝑣 + 𝑐2𝑑sin2𝑣 cos 𝑣 + 𝑏𝑐𝑑 sin2𝑣 cos2𝑢.
          

The volume of ring is equal to 

 

𝑉 =
1

3
∫ ∫ (𝑢) d𝑢 d𝑣 = (𝑎 + 𝑏) 𝑐𝑑𝜋22π

0

2𝜋

0
.   (15) 
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4  VOLUME OF AN AXOID (HORN TOROID) 

 

An axoid (a horn toroid) is a surface formed by revolving a circle k (S,r)  in E3 about an axis 

that is a tangent to the circle. In this case, the circle rotates about the z-axis. (Fig. 4): 

 

 
 

Fig. 4 The part of the axoid 

 
 

The general alternative method:  

 

Parametric equations of the surface: 

 

   𝑥1 = 𝑟(1 + cos 𝑣) cos 𝑢 

   𝑥2 = 𝑟(1 + cos 𝑣) sin 𝑢      (16) 

  𝑥3 = 𝑟 sin 𝑣 

   𝑣 ∈ 〈0; 2π〉, 𝑢 ∈ 〈0; 2π〉 

The determinant: 

 

(𝑢, 𝑣) = |
𝑟(1 + cos 𝑣) cos 𝑢 𝑟(1 + cos 𝑣) sin 𝑢 𝑟 sin 𝑣

−𝑟(1 + cos 𝑣) sin 𝑢 𝑟(1 + cos 𝑣) cos 𝑢 0
−𝑟 sin 𝑣 cos 𝑢 −𝑟 sin 𝑣 sin 𝑢 𝑟 cos 𝑣

| =   (17)

   

= ⋯ = 𝑟3(1 + cos 𝑣)2                 
The volume is equal to 

 

𝑉 =
4

3
𝑟3 ∫ d𝑢 ∫ [𝑟3(1 + cos 𝑣)2] d𝑣 = ⋯ = 2𝑟3𝜋2π

0

𝜋

0
.   (18) 

 

 

The special method for solids of revolution: 

 

The parametric equations: 
 

    𝑥1 = 𝑓(𝑢) cos 𝑣 = 𝑢 cos 𝑣 

 𝑥2 = 𝑓(𝑢) sin 𝑣 = 𝑢 sin 𝑣      (19) 

𝑥3 = 𝑔(𝑢) = √𝑟2 − (𝑢 − 𝑟)2 
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𝑣 ∈ 〈0; 2π〉, 𝑢 ∈ 〈0; 2𝑟〉 

 

The determinant is equal to: 

 

(𝑢) = 𝑢√𝑟2 − (𝑢 − 𝑟)2 +
(𝑢−𝑟)𝑢2

√𝑟2−(𝑢−𝑟)2
    (20) 

 

The volume:  

    𝑉 = 2
2𝜋

3
∫ (𝑢) d𝑢 =  

2𝑟

0
      (21) 

 

 

=
4π

3
[
3𝑟3

2
 arcsin 

𝑢 − 𝑟

𝑟
− (

3𝑟2

2
−

𝑟𝑢

2
) √𝑟2 − (𝑢 − 𝑟)2]

0

2𝑟

= ⋯ = 2𝑟3𝜋2 

 

 

 

A melanoid (a spindle toroid) is a surface in E3 formed by revolving a circle k (S,r)  about 

an axis that is a chord to the circle. In this case, the circle rotates about the z-axis. (Fig. 5).  

 

 
 

    Fig. 5 The part of the melanoid 
 

 

The special method for solids of revolution: 

 

We can use the same parametric equations as for the axoid (19). In this case, the calculation of 

the volume must be divided to two steps: 

The volume of the exterior part (an apple surface): 

 

    𝑉𝑜 = 2
2𝜋

3
∫ (𝑢) d𝑢 =  

𝑎+𝑟

0
     (22) 

 

 

=
4π

3
[
3𝑎𝑟2

2
 arcsin 

𝑢 − 𝑎

𝑟
− (

𝑎2

2
+ 𝑟2 −

𝑎𝑢

2
) √𝑟2 − (𝑢 − 𝑎)2]

0

𝑎+𝑟

= 
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=
4π

3
[
3𝑎𝑟2

2
( 

π

2
+ arcsin 

𝑎

𝑟
) − (

𝑎2

2
+ 𝑟2) √𝑟2 − 𝑎2] 

The volume Vi of the interior part (a lemon surface): 

  

    𝑉𝑖 = 2
2𝜋

3
∫ (𝑢) d𝑢 =  

0

𝑎−𝑟
      (23) 

 

 

=
4π

3
[
3𝑎𝑟2

2
 arcsin 

𝑢 − 𝑎

𝑟
− (

𝑎2

2
+ 𝑟2 −

𝑎𝑢

2
) √𝑟2 − (𝑢 − 𝑎)2]

0

𝑎+𝑟

= 

 

=
4π

3
[
3𝑎𝑟2

2
( 

π

2
− arcsin 

𝑎

𝑟
) + (

𝑎2

2
+ 𝑟2) √𝑟2 − 𝑎2] 

 

 

The volume V of the “hollow” body is determined by the difference between these two volumes, 

i.e.: 

 

    𝑉 = 𝑉𝑜 − 𝑉𝑖 = 4𝑎𝑟2𝜋 arcsin 
𝑎

𝑟
      (24) 

 

By comparing both method, we can see, that for each special case, some method is more 

suitable. 

 

 

5  USING GEOGEBRA FOR COMPUTING VOLUMES FOR A TOROID 
 

The volumes of solids of revolution are very easy to count using the software known as 

GeoGebra. For example, the volume of the toroid is computed by the formula above – see the 

applet in the Fig. 6. There are used the sliders for setting the values of the parameters R (the 

distance from the centre of the rule of the tube to he centre of the toroid, and r (the radius of the 

tube) of the toroid in the applet. Changing  the values of the parameters, we create the toroid of 

the different parameters. It is possible to construct the analogous applets for computing the 

volumes of the axoid, respective melanoid. 

 

 

CONCLUSION 

 

In the real practice, we are able to find many technical applications where the presented method 

could be used. The software GeoGebra is a very good tool to the demonstrations of it. Its 

advantage is that it is available for free and that it is used a lot of when teaching in schools. 

Intermediate calculations of determinants and volumes can be easy to obtain. 

All figures were made by the authors. Some of them have been published in [2].   

 

 

40



 
 

 

Fig. 6 The applet for computing volume of a toroid created in GeoGebra 5.0 [2]   
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Abstract: In the paper, the discrete Emden-Fowler type equation

∆2u(k)± kαum(k) = 0

is considered where k ≥ k0, k is an independent variable, k0 is a fixed integer, u : {k0, k0+1, ...} →
R, ∆u(k) is the first difference of u(k), ∆2u(k) is the second difference of u(k), m and α are real
numbers. A result on asymptotic behaviour of solutions when k → ∞ is proved and admissible
values m and α satisfying assumptions of this result are considered in an (m,α)-plane.

Keywords: Emden-Fowler equation, discrete equation, nonlinear equation, asymptotic behaviour.

INTRODUCTION

Consider a discrete Emden-Fowler equation

∆2u(k)± kαum(k) = 0, (1)

where u : N(k0) := {k0, k0 + 1, ...} → R, ∆u(k) = u(k + 1)− u(k) is the first difference of u(k),
∆2u(k) = u(k+2)−2u(k+1)+u(k) is the second difference of u(k) andm and α are real numbers.
Throughout the paper we assume α 6= 0 andm 6= 0, 1. A function u : N(k0) := {k0, k0+1, ...} → R
is called a solution of equation (1) if, for every k ∈ N(k0), equation (1) is satisfied.

Equation (1) is a discrete variant of the well-known second-order differential Emden-Fowler
equation [1]. In the previous research of the second author [5, Corollary 1], it is proved that if m
and α satisfy either

0 < m < 1, α < −2 (2)

or
m > 1, −2 < α <

1

2

(
−(m− 1) +

√
(m− 1)2 + 16m

)
(3)
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then the equation (1) has a solution with the asymptotic behavior

u(k) =
a

ks
+

b

ks+1
+O

(
1

ks+γ+1

)
(4)

when k →∞, where O is the Landay order symbol “big” O, γ ∈ (0, 1) is a fixed number and

s =
α + 2

m− 1
, a = [∓s(s+ 1)]1/(m−1), b =

as(s+ 2)

s+ 2−ms
. (5)

In this article, we are going to supplement the set of previous conditions (2), (3) for the existence
of the solution of the difference equation (1) having asymptotic behaviour (4) with an additional
set of sufficient conditions such that asymptotic behaviour (4) will be preserved.

Remark 1. Equation (1) splits into two equations

∆2u(k) + kαum(k) = 0

and
∆2u(k)− kαum(k) = 0.

Nevertheless, above and in the the remaining part of the paper we apply the following restriction to
the first of them, i.e., when in equation (1) sign ”+” is considered. The sign ”+” in equation (1) is
applicable only in the case of m having the form of a rational number, m = p/q where p and q are
integers, such that the difference p − q is odd. Then equation (1) has the solution with asymptotic
behaviour (4).

1 PRELIMINARIES

To prove the main result formulated below we need the following auxiliary result (we refer to
original sources [2, 3]). Let a system of discrete equations

∆Y (k) = F (k, Y (k)), k ∈ N(k0) (6)

be given, where Y = (Y0, . . . , Yn−1)T and F = (F1, . . . , Fn)T : N(k0) × Rn → Rn. A solution
Y = Y (k) of system (6) we define as a function Y : N(k0) → Rn such that for each k ∈ N(k0)
equation (6) is satisfied. Let a point

Y (k0) = Y 0, Y 0 ∈ Rn (7)

be fixed. It is well-known that the initial problem (6), (7) determines a unique solution to (6). Let
functions bi, ci : N(k0)→ R, i = 1, ..., n be fixed and satisfy

bi(k) < ci(k), k ∈ N(k0), i = 1, ..., n. (8)

To formulate the auxiliary result, define functions Bi, Ci : N(k0)× R→ R, i = 1, . . . , n

Bi(k, Y ) := −Yi−1 + bi(k), Ci(k, Y ) := Yi−1 − ci(k)
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and sets

Ωi
B := {(k, Y ) : k ∈ N(k0), Bi(k, Y ) = 0, Bj(k, Y ) ≤ 0, Cp(k, Y ) ≤ 0,

∀ j, p = 1, . . . , n, j 6= i},

Ωi
C := {(k, Y ) : k ∈ N(k0), Ci(k, Y ) = 0, Bj(k, Y ) ≤ 0, Cp(k, Y ) ≤ 0,

∀ j, p = 1, . . . , n, p 6= i}

where i = 1, ..., n.

Lemma 1. Let a function F (k, Y ) be continuous with respect to Y . If

Fi(k, Y ) < bi(k + 1)− bi(k) (9)

for every i = 1, . . . , n and every (k, Y ) ∈ Ωi
B and

Fi(k, Y ) > ci(k + 1)− ci(k) (10)

for every i = 1, . . . , n and every (k, Y ) ∈ Ωi
C , then there exists a solution Y = Y (k), k ∈ N(k0) of

system (6) such that

bi(k) < Yi−1(k) < ci(k), k ∈ N(k0), i = 1, . . . , n. (11)

2 MAIN RESULT

In this part, we prove the main result of the contribution on the existence of a solution to
equation (1) when k → ∞. It is formulated in terms of coefficients s, m and some auxiliary
constants γ and εi, i = 1, 2, 3, 4.

Theorem 1. Let either
s > 0, m > 0 (12)

or
− 1 < s < 0, m < 0. (13)

Assume that there exists a constant γ, satisfying 0 < γ < 1 and positive numbers εi, i = 1, 2, 3, 4,
such that

ε3 < ε1 ·
γ + s+ 1

s+ 1
, (14)

ε4 < ε2 ·
γ + s+ 1

s+ 1
, (15)

ε1 < ε3 ·
γ + s+ 2

ms
, (16)

ε2 < ε4 ·
γ + s+ 2

ms
. (17)
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Then, for sufficiently large fixed k0 > 0, there exists a solution u : N(k0) → R of equation (1)
such that, for every k ∈ N(k0) asymptotic representation (4) holds or, more presisely, this solution
satisfies

− ε1

kγ
<

[
u(k)− a

ks
− b

ks+1

] [
b

ks+1

]−1

<
ε2

kγ
, (18)

− ε3

kγ
<

[
∆u(k)−∆

( a
ks

)
−∆

(
b

ks+1

)][
∆

(
b

ks+1

)]−1

<
ε4

kγ
, (19)

− ε1

kγ
+O

(
1

k

)
<

[
∆2u(k)−∆2

( a
ks

)
−∆2

(
b

ks+1

)][
∆2

(
b

ks+1

)
ms

s+ 2

]−1

<
ε2

kγ
+O

(
1

k

)
. (20)

Proof. To prove this theorem we transform the difference Emden-Fowler equation (1) to the system
of difference equation

∆Y0(k) = F1(k, Y0(k), Y1(k)) :=

(
−s+ 1

k
+O

(
1

k2

))
(−Y0(k) + Y1(k)) , (21)

∆Y1(k) = F2(k, Y0(k), Y1(k)) :=

(
−s+ 2

k
+O

(
1

k2

))(
ms

s+ 2
Y0(k)− Y1(k) +O

(
1

k

))
(22)

using the following change of variables

u(k) =
a

ks
+

b

ks+1
(1 + Y0(k)), (23)

∆u(k) = ∆

(
a

ks

)
+ ∆

(
b

ks+1

)
(1 + Y1(k)), (24)

∆2u(k) = ∆2

(
a

ks

)
+ ∆2

(
b

ks+1

)
(1 + Y2(k)) (25)

where Yi(k), i = 0, 1, 2 are new unknown functions. For computational details how the system (21),
(22) is derived by transformation (23)–(25) we refer to [4, Part 3]). Consider functions b1, b2, c1

and c2, defined as follows:

b1(k) := − ε1

kγ
, c1(k) :=

ε2

kγ
, b2(k) := − ε3

kβ
, c2(k) :=

ε4

kβ

where εi > 0, i = 1, 2, 3, 4, β > 0 and γ > 0. These functions satisfy inequalities (8). Then

B1(k, Y ) := −Y0 + b1(k) = −Y0 −
ε1

kγ
, C1(k, Y ) := Y0 − c1(k) = Y0 −

ε2

kγ

and
B2(k, Y ) := −Y1 + b2(k) = −Y1 −

ε3

kβ
, C2(k, Y ) := Y1 − c2(k) = Y1 −

ε4

kβ
.
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To apply Lemma 1, the following inequalities must be valid:

F1(k, b1(k), Y1) < b1(k + 1)− b1(k) (26)

if (k, Y0, Y1) ∈ Ω1
B where

Ω1
B :=

{
(k, Y0, Y1) : k ∈ N(k0), Y0 = − ε1

kγ
, − ε3

kβ
≤ Y1 ≤

ε4

kβ

}
,

(we refer to (9) where i = 1),

F1(k, c1(k), Y1) > c1(k + 1)− c1(k), (27)

if (k, Y0, Y1) ∈ Ω1
C where

Ω1
C :=

{
(k, Y0, Y1) : k ∈ N(k0), Y0 =

ε2

kγ
, − ε3

kβ
≤ Y1 ≤

ε4

kβ

}
,

(we refer to (10) where i = 1),

F2(k, Y0, b2(k)) < b2(k + 1)− b2(k), (28)

if (k, Y0, Y1) ∈ Ω2
B where

Ω2
B :=

{
(k, Y0, Y1) : k ∈ N(k0),− ε1

kγ
≤ Y0 ≤

ε2

kγ
, Y1 = − ε3

kβ

}
,

(we refer to (9) where i = 2), and

F2(k, Y0, c2(k)) > c2(k + 1)− c2(k) (29)

if (k, Y0, Y1) ∈ Ω2
C where

Ω2
C :=

{
(k, Y0, Y1) : k ∈ N(k0),− ε1

kγ
≤ Y0 ≤

ε2

kγ
, Y1 =

ε4

kβ

}
,

(we refer to (10) where i = 2). From assumptions (12) and (13) we have ms > 0 and s + 1 > 0.
These inequalities are used tacitly below. Now, we will verify inequalities (26)–(29). Conditions
for their validity are, due to assumptions (12), (13) different from those derived in [4]).

Let us verify inequality (26). It will hold if

F1(k, b1(k), Y1) ≤ max
(k,Y0,Y1)∈Ω1

B

F1(k, b1(k), Y1) =

(
−s+ 1

k
+O

(
1

k2

))
·
( ε1

kγ
− ε3

kβ

)
< b1(k + 1)− b1(k) =

ε1γ

kγ+1

(
1 +O

(
1

k

))
.

This inequality will hold if either
γ < β (30)

or
γ = β, ε3 < ε1

γ + s+ 1

s+ 1
. (31)
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Now, verify inequality (27). It will hold if

F1(k, c1(k), Y1) ≥ min
(k,Y0,Y1)∈Ω1

C

F1(k, c1(k), Y1) =

(
−s+ 1

k
+O

(
1

k2

))
·
(
−ε2

kγ
+
ε4

kβ

)
> c1(k + 1)− c1(k) = − ε2γ

kγ+1

(
1 +O

(
1

k

))
.

This inequality will hold if either
γ > β (32)

or
γ = β, ε4 < ε2

γ + s+ 1

s+ 1
. (33)

Let us verify inequality (28). It will hold if

F2(k, Y0, b2(k)) ≤ max
(k,Y0,Y1)∈Ω2

B

F2(k, Y0, b2(k))

=

(
−s+ 2

k
+O

(
1

k2

))(
ms

s+ 2

−ε1

kγ
+
ε3

kβ
+O

(
1

k

))
< b2(k + 1)− b2(k) =

ε3β

kβ+1

(
1 +O

(
1

k

))
.

This inequality will hold if either
γ > β (34)

or
γ = β, γ < 1, ε1 < ε3

γ + s+ 2

ms
. (35)

Note again that (34) contradicts to (30). Now, verify inequality (29). It will hold if

F2(k, Y0, c2(k)) ≥ min
(k,Y0,Y1)∈Ω2

C

F2(k, Y0, c2)

=

(
−s+ 2

k
+O

(
1

k2

))(
ms

s+ 2

ε2

kγ
− ε4

kβ
+O

(
1

k

))
> c2(k + 1)− c2(k) = − ε4β

kβ+1

(
1 +O

(
1

k

))
.

This inequality will hold if either
γ > β (36)

or
γ = β, γ < 1, ε2 < ε4

γ + s+ 2

ms
. (37)

Summing up all restrictions (30)–(37) we get the conditions (14)–(17). Inequalities (18)–(20) fol-
low from inequalities (11). This concludes the proof of theorem.

Remark 2. The system of conditions (14)–(17) is the same as in the recent contribution [5]. But
unlike of the paper [5] the range of admissible values of m and s is substantially enlarged. Hence,
these new conditions we can use to formulate the following corollaries.
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3 COROLLARIES

In this part we derive two corollaries implied by Theorem 1.

Corollary 1. Let either (12) or (13) hold. If, moreover,

ms <
(s+ 2)(s+ 3)

s+ 1
, (38)

then Theorem 1 is applicable.

Proof. If all hypotheses of the corollary hold, then inequality (38) implies the existence of εi,
i = 1, 2, 3, 4 such that inequalities (14)–(17) hold.

Remark 3. The inequality (38) formally almost coincides with [5, inequality (4)]. But these in-
equalities are not equivalent because the mentioned inequality needs s > 0 and m > 0. This is not
true in the case (13).

An advantage of the next corollary is that it makes it possible to apply Theorem 1 even if only
some of the inequalities in terms of constants α and m, i.e., the constants involved in equation (1)
hold. Additional conditions restricting the value of s are not necessary.

Corollary 2. Let at least one of following assumptions (i)–(iv) hold:

(i)

m ∈
(
−7− 4

√
3,−7 + 4

√
3
)
, −2 < α < −m− 1,

(ii)
0 < m < 1, α < −2,

(iii)

m > 1, −2 < α <
1

2

(
−(m− 1) +

√
(m− 1)2 + 16m

)
,

(iv)
−2 < α < −m− 1, m < 0, (m− 1)2 + 16m > 0

and either
α <

1

2

(
−(m− 1)−

√
(m− 1)2 + 16m

)
or

α >
1

2

(
−(m− 1) +

√
(m− 1)2 + 16m

)
.

Then Corollary 1 is applicable.

Proof. It is easy to verify that, if one of assumptions (ii) or (iii) holds then so do inequalities (12).
If assumptions (i) or (iv) hold, then so do inequalities (13).

Due to the conditions (12) or (13) we have s+ 1 > 0 and inequality (38) in Corollary 1 can be
written as

ms(s+ 1) < s2 + 5s+ 6.
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This inequality was considered in [5] and implies [5, formula (16)]

(m− 1)
[
α2 + α(m− 1)− 4m

]
< 0. (39)

If (12) holds then m > 0. This case was treated in [5, Corollary 1] and leads to inequalities
formulated in cases (ii) and (iii) in Corollary 2. So, we omit this part of considerations.
If (13) holds, then m < 0 and −1 < s < 0. Using formula (5), these two inequalities imply

−2 < α < −m− 1.

Therefore
m− 1 < 0

and the inequality (39) is equivalent to the following one:

α2 + α(m− 1)− 4m > 0. (40)

Consider discriminant D of the quadratic equation

α2 + α(m− 1)− 4m = 0 (41)

with an unknown value of α. We have

D = (m− 1)2 + 16m.

If D < 0, i.e., if
m ∈ (−7− 4

√
3,−7 + 4

√
3)

then the inequality (40) holds for all α and inequalities in (i) are proved. If D > 0 then the real
distincts roots of quadratic equation (41) are

α± =
1

2

(
−(m− 1)±

√
(m− 1)2 + 16m

)
and inequality (40) will hold if either

α < α− =
1

2

(
−(m− 1)−

√
(m− 1)2 + 16m

)
or

α > α+ =
1

2

(
−(m− 1) +

√
(m− 1)2 + 16m

)
.

Thus, inequalities in (iv) are correct.

Remark 4. The result of Corollary 2 can be visualized in (m,α)-plane. The set of all points (m,α)
satisfying at least one of assumptions (i)–(iv) is depicted in Figure 1. All such admissible points fill
the yellow coloured open domain. This domain is bounded by the lines m = 1, α = −2, coloured
in green, by the function

α =
1

2

(
−(m− 1)−

√
(m− 1)2 + 16m

)
,

coloured in red and by the function

α =
1

2

(
−(m− 1) +

√
(m− 1)2 + 16m

)
,

coloured in blue. The subdomains I–IV depict points satisfying inequalities in (i)-(iv), respec-
tively. A detail of a part of the domain IV is visualized in Figure 2.
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Figure 1: Admissible points of (m,α)-plane given by Corollary 2

4 EXAMPLE

Let m = −4, α = 1. Then equation (1) reduces to the following

∆2u(k)± k · u−4(k) = 0. (42)

Using (5) we get values s, a and b

s = −0.6, a = ± 5

√
25

6
, b = ±21

25
5

√
25

6
.
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Figure 2: A detail of a part of the domain IV

Let ε1 = ε2 = 1/2, ε3 = ε4 = 1 and γ = 3/4. Then inequalities (14)–(17) reduce to

ε3 = 1 < ε1 ·
γ + s+ 1

s+ 1
=

23

16
,

ε4 = 1 < ε2 ·
γ + s+ 1

s+ 1
=

23

16
,

ε1 =
1

2
< ε3 ·

γ + s+ 2

ms
=

43

48
,

ε2 =
1

2
< ε4 ·

γ + s+ 2

ms
=

43

48
,

hence they are valid. Since (13) holds as well, all assumptions of Theorem 1 are fulfilled. Its
statement says that, for sufficiently large fixed k0 > 0, there exists a solution u : N(k0) → R of
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equation (42) such that, for every k ∈ N(k0), inequalities (18), (19), (20) are valid. Let us write
them in detail.
Analysis of inequality (18). Since

u(k)− a

ks
− b

ks+1
= u(k)∓ 5

√
25

6
k3/5 ∓ 21

25
5

√
25

6

1

k2/5
,

[
b

ks+1

]−1

=

[
±21

25
5

√
25

6

1

k2/5

]−1

= ±25

21
5

√
6

25
k2/5

and
ε1,2

kγ
=

1

2k3/4
,

the inequality (18) turns into

− 1

2k3/4
<

[
u(k)∓ 5

√
25

6
k3/5 ∓ 21

25
5

√
25

6

1

k2/5

][
±25

21
5

√
6

25
k2/5

]
<

1

2k3/4
, (43)

or, after a simplification, to∣∣∣∣∣u(k) +
5

√
25

6
k3/5 +

21

25
5

√
25

6

1

k2/5

∣∣∣∣∣ < 21

50
5

√
25

6

1

k23/20

in the case of equation (42) where the sign + is applied and to∣∣∣∣∣u(k)− 5

√
25

6
k3/5 − 21

25
5

√
25

6

1

k2/5

∣∣∣∣∣ < 21

50
5

√
25

6

1

k23/20

in the case of equation (42) where the sign − is applied.
Analysis of inequality (19). Inequality (19) turns into

− 1

k3/4
<

∆u(k)−∆

± 5

√
25
6

k−3/5

−∆

±21
25

5

√
25
6

k2/5

∆

±21
25

5

√
25
6

k2/5

−1

<
1

k3/4
(44)

or, after a simplification, to∣∣∣∣∣∆u(k)− 5

√
25

6
∆
(
k3/5

)
− 21

25
5

√
25

6
∆

(
1

k2/5

)∣∣∣∣∣ < −21

25
5

√
25

6

∆(k−2/5)

k3/4

in the case of equation (42) where the sign + is applied and to∣∣∣∣∣∆u(k) +
5

√
25

6
∆
(
k3/5

)
+

21

25
5

√
25

6
∆

(
1

k2/5

)∣∣∣∣∣ < −21

25
5

√
25

6

∆(k−2/5)

k3/4

in the case of equation (42) where the sign − is applied.
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Analysis of inequality (20). Inequality (20) turns into

− 1

2k3/4
+O

(
1

k

)

<

∆2u(k)−∆2

± 5

√
25
6

k−3/5

−∆2

±21
25

5

√
25
6

k2/5

∆2

±21
25

5

√
25
6

k2/5

 12

7

−1

<
1

2k3/4
+O

(
1

k

)
. (45)

or, after a simplification, to∣∣∣∣∣∆2u(k)− 5

√
25

6
∆2
(
k3/5

)
− 21

25
5

√
25

6
∆2

(
1

k2/5

)∣∣∣∣∣
<

36

25
5

√
25

6

(
1

2k3/4
+O

(
1

k

))
∆2(k−2/5)

in the case of equation (42) where the sign + is applied and to∣∣∣∣∣∆2u(k) +
5

√
25

6
∆2
(
k3/5

)
+

21

25
5

√
25

6
∆2

(
1

k2/5

)∣∣∣∣∣
<

36

25
5

√
25

6

(
1

2k3/4
+O

(
1

k

))
∆2(k−2/5)

in the case of equation (42) where the sign − is applied.

Remark 5. Inequality (38) is also fulfilled because

12

5
= ms <

(s+ 2)(s+ 3)

s+ 1
=

84

10
.

Then Corollary 1 is applicable as well.

CONCLUSION

In the paper we generalized the results on asymptotic behaviour of solutions of Emden-Fowler
type difference equation (1) derived in [5]. The progress was achieved by a new estimation of
the right-hand sides of the auxiliary system (21), (22) if a new set of assumptions on coefficients
of equation (1) is used (inequalities (13) in Theorem 1). This generalization is clearly visible in
Figure 1 where the sets II and III of admissible points (m,α) are implied by the results of the
paper [5] and the sets I and IV are new domains of admissible points not covered by the results
of [5].

Let us note, referring to [1], that the classic second-order differential Emden-Fowler equation

y′′(x)± xαym(x) = 0
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has the exact solution
y = a/xs,

where the coefficients a and s are computed by formulas (5). The formula (4) describes the asymp-
totic behaviour of a solution to (1) being similar to the behaviour of this exact solution. Therefore it
seems, if in (1) the difference ∆u(k) is redefined as a difference with the step equaling an arbitrarily
small positive number h rather than with one equalling 1 that is, if

∆u(k) := (u(k + h)− u(k)) /h,

that, for h → 0, the yellow domain on Figure 1 should cover almost all (m,α)-plane (except for
the value m = 1 and maybe values α = 0, m = 0). This is still an open problem.

Moreover, the method of investigation used seems to be suitable for analyzing the asymptotic
behaviour of generalized Emden-Fowler type difference equations such as

∆2u(k) + c1k
α
1 u

m1(k) + c2k
α
2 u

m2(k) + · · ·+ c`k
α
` u

m`(k) = 0

where ci, αi and mi, i = 1, . . . , ` are suitable constants.
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Abstract: Preparing university students for a mathematical test can take place in a variety of 
ways. One option is to take a suitable praparatory course, which is often offered mainly to 
first-year students. The natural question then arises whether completing such a course has a 
significant effect on students’ success in the test.  The research described in this paper is 
focused on the relationship between attending the special preparatory course for prospective 
teachers and their success in the mathematical test. Two ways of processing data from 
contingency table relating student test results and kind of their training (course, individual) 
are shown. First one is the traditional independence testing based on the Pearson chi-squared 
statistic and the second one is the Bayesian model comparing. In both cases, the research 
results indicate a statistically significant difference in test score in favor of students attended 
the course. In addition, these results are supported by direct calculation of posterior 
conditional probabilities of student’s attending the course under the condition of successful 
test passing. Using the Bayes rule it was shown that the probability that a randomly selected 
successful student attended the course is greater than 80%. 

 

Key words: contingency table, preparatory course, university teacher training, Bayesian 
approach. 

 

INTRODUCTION 

The success or failure of students in exams, especially during the first year of study, has  
a great influence on their motivation for further study. This motivation is especially 
significant for prospective teachers, as it can be reflected in their future pedagogical work 
([1], [19]). For this reason, a number of optional preparatory courses are used to offer a 
teacher training to students at faculties implementing teacher education. The preparatory 
courses play an important role especially for pre-service mathematics teachers, as a certain 
level of basic knowledge is necessary for the study of mathematics. A number of studies 
showed the importance of quality training of future mathematics teacher for their beliefs and 
attitudes towards mathematics ([18], [25], [27]). On the other hand, not many pre-service 
teachers programs have been investigated with respect to their effectiveness and influence on 
test success ([15]). Obviously, some initial dispositions of students play an important role for 
successful study ([2]). Especially preceding domain knowledge and previous learning 
experiences represent the significant factors influencing the success ([10]). Of course, it is not 
possible to forget about other important factors, such as student motivation ([1], [7], [19]), 
curricula design ([24]), cultural expectation ([22]), etc.  
Students of mathematics teacher training at the Faculty of Science of Palacky University in 
Olomouc, Czech Republic take an algebra test during the first year. The test is primarily 
focused on algebraic symbol manipulation skills and basic knowledge of linear algebra. The 
highest rating of test points is 100 and at least 60 points are considered a successful result. 
The success of students in the test can be influenced by many different factors. An important 
prerequisite for success is, of course, the active preparation of students in solving the 
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recommended tasks. Students can solve these tasks individually or as part of an optional 
preparatory course under the guidance of a teacher. The preparatory course is focused on the 
acquisition of basic algebraic concepts and their active use in problem solving. 
 
 
1 MATERIALS AND METHODS  

1.1 Research Problem and Research Hypotheses 

The research problem was to find out the relationship between attending the preparatory 
course for first-year students of future teacher training and their success in the mathematical 
test. The main aim of this research was to answer the question whether the preparatory course 
contributed significantly to the successful writing of the final mathematical test. With regard 
to this question, the null and alternative hypotheses were formulated as follows: 
 
Hypothesis H0: The difference between test results of students completing the preparatory 
course and other students is not statistically significant. 
Hypothesis HA: The difference between test results of students completing the preparatory 
course and other students is statistically significant. 

 

1.2 General Background  

Solving the research problem supposes to carry out an independence test for two categorical 
variables – the results of students’ mathematical test and the kind of students’ preparation for 
the test. The frequentist approach of the independence testing is based on the familiar Pearson 
chi-squared statistics. In this test, observed data are compared with the expected ones under 
an independence model. The dependence between the variables is then determined by the 
statistical significance of the difference. The Bayesian perspective is completely different. 
This viewpoint compares two possible models – the model MK for dependent variables and 
model MI for independent variables. 

 

1.3 Participants 

The sample consisted of 116 first year mathematics teacher training students at Faculty of 
Science of Palacky University in Olomouc. The mathematical test was administered to these 
students in 2020 at the end of the first semester. 74 students (63.8 %) completed the 
preparatory course and 42 students (36.2 %) prepared individually (Tab. 1). 
 
1.4 Research Instrument 

According to the research problem comparative research design was adopted. Data on the two 
categorical variables obtained from the sample are presented using the contingency table 
(Tab. 1). The variable “kind of students’ preparation” takes two values – “course” and 
“individual”. The values of the variable “results of test” are “successful” (score 60 – 100 ) and 
“unsuccessful” (score 0 – 59). 

 Course individual  
Successful  49 19 68 

Unsuccessful  25 23 48 
 74 42 116 

Tab. 1: Contingency table relating student test results and kind of their training 
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1.5 Data Analysis and Results 

Program R with its package “LearnBayes” can be used for the data analysis ([3]). The 
following sequence of R language commands creates the contingency table as variable 
“student”. Using R function chisq.test to test the independence hypothesis one obtains p-value 
approximately 0.04, which is an evidence that the result of the test is related to the completion 
of the course. 
> student=matrix(c(49,25,19,23),c(2,2)) 
> student 
 
     [,1] [,2] 
[1,]   49   19 
[2,]   25   23 
 
> chisq.test(student) 
 
        Pearson's Chi-squared test with Yates' continuity correction 
 
data:  student 
X-squared = 4.0346, df = 1, p-value = 0.04458 
 
Testing the independence of two categorical variables can be also performed using Bayesian 
model comparison. The easiest way is to compare our model “student” with the independent 
model “uniform” using R function ctable.  The Bayes factor approximately 3.5 > 1 indicates 
support against independence of the variables. 
 
> uniform=matrix(rep(1,4),c(2,2)) 
> uniform 
 
     [,1] [,2] 
[1,]    1    1 
[2,]    1    1  
 
> ctable(student,uniform) 
 
[1] 3.51763 
 
The Bayesian approach makes it possible to compare an “independence model“ with a model 
close to an “independence“ one. Such a model has been introduced by Albert and Gupta in 
[4]. This model is based on conjugated Dirichlet distribution and allows the calculation of 
Bayes factors for various models approaching the „independence“ one. The following short 
algorithm computes  the Bayes factors to compare our model „student“ with an alternative 
models that are close to independence.  
> log.k=seq(2,8) 
> comp.log.bf=function(log.k) 
+ log(bfindep(student,exp(log.k),1000000)$bf) 
> log.bf=sapply(log.k,comp.log.bf) 
> bf=exp(log.bf) 
> round(data.frame(log.k,log.bf,bf),2)  
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log.k log.bf   bf 
1     2  -0.10 0.91 
2     3   0.81 2.25 
3     4   1.01 2.75 
4     5   0.76 2.14 
5     6   0.41 1.51 
6     7   0.18 1.20 
7     8   0.07 1.07 
 
The key function bfindep required the Dirichlet parameter k and the size of the simulated 
sample (1000000 in the case). The output is a list of Bayes factors (bf) for the sequence of the 
values of log k. The maximum value 2.75 indicates some support for the model with log k = 4 
that is close to the independence model against the independence one (Fig. 1). All the results 
of the data analysis confirm the positive effect of completing the preparatory course on the 
students‘ success in the test. 

 
Fig. 1: Log Bayes factor in support of model MK over MI (source: own calculation) 

 

 

2 USEFULNESS OF BAYESIAN RULE  

 
The posterior conditional probability that a randomly selected successful student attended the 
course should be determined as a secondary „research problem“. For this purpose, let us 
consider the following statements: 
Hypothesis H1: Randomly selected student completed the preparatory course. 
Hypothesis H2: Randomly selected student did not complet the preparatory course. 
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Proposition T: Randomly selected student has written the test successfully. 

Probability of the hypothesis H1,  𝑃(𝐻ଵ) = 
଻ସ

ଵଵ଺
 0.638. For probability of the hypothesis H2 it 

holds 𝑃(𝐻ଶ) = 
ସଶ

ଵଵ଺
 0.362. From previous records, it follows for the conditional probabilities 

𝑃(𝑇 𝐻ଵ) = 0.75  and  𝑃(𝑇 𝐻ଶ) = 0.3. 
Hence,  𝑃(𝑇) =  𝑃(𝐻ଵ) 𝑃(𝑇 𝐻ଵ) +  𝑃(𝐻ଶ) 𝑃(𝑇 𝐻ଶ) = 0.6380.75 + 0.3620.3 = 0.588. 
Thus, almost 60% of students take the test for a long time.  
However, we are interested in a specific student who was successful in the test. The prior 
probability 0.638 can be modified after finding her/his success in the test to the posterior 
probability using the Bayes rule 

𝑃(𝐻ଵ 𝑇) =
௉(ுభ) ௉(் ுభ)

௉(்)
 = 0.815. 

This means, that the probability that a randomly selected successful student attended the 
course is greater than 80 %. Consequently, the complementary probability is 0.185. 

𝑃(𝐻ଶ 𝑇) =
௉(ுమ) ௉(் ுమ)

௉(்)
 = 0.185. 

Thus, a randomly selected successful student prepared for the test individually with  
a probability of 18.5 %. 

These facts also speak in favor of organized teacher-led training. 

 

DISCUSSION 

The research results described above clearly showed the usefulness of the preparatory course 
for future teachers. The findings of this research correspond to the results of similar studies. 
For instance, [9] describe the effect of the preparatory online course on the success of study of 
chemistry. The positive correlation between the examination results in mathematics and the 
attendance of a preparatory course for first-year university students focused on the basic 
mathematics skills was confirmed in the study [17]. Other studies showing the positive effect 
of the courses are [5], [13], [14]. On the other hand, it is fair to mention also the studies that 
have found no significant effect of the preparatory courses ([11], [23]). These inconsistent 
results can be caused by different type of the courses. There exist a lot of studies focused on 
the effect of the preparatory courses but only a few of them investigate this effect in relation 
to the type of a course ([6], [16]). The importance of online learning in the context of the 
global coronavirus pandemic is becoming increasingly important. Further research on pending 
development of the preparatory courses and evaluation of preparatory material is needed, in 
particular in the field of e-learning, with regard to support for the independent learning ([17]).  
It is a debatable point whether the test performance is the best manner to investigate the 
educational benefit of a course. It would be desirable to have not only the results of a 
compulsory math test, but also more information about students’ future performance. On the 
other hand, this is an easily accessible and universally applicable measure of achievement.  
Investigating the dependence of categorical data in a contengency table using Bayesian 
factors brings some specific benefits. For example, according to a Bayes factor one can 
quantify evidence in behalf of the null hypothesis and the factors can be monitored as the data 
acumulate ([28]). The second advantage can be particularly important when the data come 
from a natural process that develops over time without any predetermined stopping point 
([20]). It can be argued that these benefits are well known for a long time, as Bayes factors for 
contingency tables have been introduced more than fifty years ago ([21]). However, most 
researches usually use for the analysis of contingency tables classical methods, obtaining p-
values through Pearson chi-square statistics or likelihood ratio tests. One of the reasons for the 
omission of Bayesian methods in the empirical research was the lack of their implementation 
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in user-friendly software packages. Recently, however, the situation in this area has greatly 
improved with the appearance of new computer support. 

  

CONCLUSION 

Correct understanding of basic mathematical concepts and thorough acquisition of numerical 
skills is a key prerequisite for successful study of all mathematical disciplines taught at the 
university. This study shows that a suitable preparatory course for beginning students focused 
on these basic knowledge and skills can contribute to the successful writing of the final 
mathematics test. It is natural to assume that this successful start will positively affect their 
entire further study. 
The relatively less used Bayessian approach to processing data from contingency table is 
shown in the article. The possibility of a Bayesian approach was suggested in the data 
analysis section. This approach represents an alternative to classical data analysis. Classical 
(frequentist) statistical methods use probabilistic models applicable only to mass phenomena 
whose occurrence or absence can be observed repeatedly in many situations. Probability is 
understood here as the relative frequency of occurrence of the observed phenomenon ([26]). 
On the other hand, the Bayesian approach interprets probability as a measure of belief in the 
truth of the statement ([12]). Although this approach is historically older, it has been criticized 
for its subjectivism and has been outside the main scientific interest. Since the 1990s, 
however, the methods have experienced a certain renaissance and today are considered 
modern methods with wide practical application. 
Any researcher who is serious about statistical data analysis should not be limited to the 
classical frequentist methods, but should also become familiar with some alternative 
approaches. The Bayesian perspective is in a sense more universal than the classical one, 
because Bayesian methods are not limited to the analysis of mass phenomena. Admittedly, 
these methods are more demanding on theoretical knowledge and numerical skills. However, 
Bayesian statistical analysis has recently been intensively developed, among other things, 
thanks to new algorithmic procedures and suitable freely accessible software (Python, 
WinBugs, R, Jasp). 
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Abstract: In the article, we focus on one of possible ways how to increase the scientific quality
of experimental theses. Experimental results are of great importance and conclusions drawn from
them as well, but for the reader without the expert eye, it may be difficult to come to the same
conclusion. Therefore, we apply an interdisciplinary approach with emphasis on the point of view
of a statistician. On a particular example, we present how a thesis could be moved to a higher
professional level with the help of a statistical approach to assessing experimental results.

Keywords: experiment, assessment, statistics, functional data analysis, thesis, consultant.

INTRODUCTION

The highest level of university study is postgraduate study. An important part of it is the elaboration
and subsequent defence of a dissertation thesis. The demands for the thesis are very high. Students
are expected to demonstrate thorough knowledge of the current state of the problem and that they
are able to work scientifically and independently. It is highly appreciated if the student, i.e. the
author of the dissertation thesis, offers his own contribution or solution to the development of the
scientific discipline. That is new, yet unpublished knowledge.

The students demonstrate the ability of a suitable selection of a professional problem and its pro-
cessing in an appropriate manner. Their cooperation with scientific institutes is also expected since
the scientific level of the theses is guaranteed by people who participate in the dissertation creation
process, namely by supervisors and their professional erudition. In addition to the supervisor of
the thesis, the author usually cooperates with a consultant. Depending on the nature of the work,
consultations with other experts may be necessary. In some cases, a supervisor specialist may also
be assigned. They all ensure that the work meets the relevant formal and content requirements, but
especially that it brings appropriate results.

This is also the case at the University of Defence postgraduate study. The students select from the
offered topics, which they work on under the guidance of experienced supervisors. The dissertation
themes cover a wide range of specializations, depending on the study field. In accordance with the
requirements for the dissertation scientific level, new findings, very often confirmed experimen-
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tally, are incorporated into the theses. Students then draw appropriate conclusions based on the
experimental results.

We pondered if these conclusions, which are usually based only on the visual expert assessment,
could be supported by a suitable mathematical approach. More precisely, to use the means of
statistics to confirm the experimental results and assessment, which can take the scientific quality
of the dissertation thesis to a higher level. We understand that the aim of the thesis is not a statistical
evaluation of the results, but a proposal to verify a certain procedure. Nevertheless, we believe that
some statements could be assisted with an appropriate statistical test. This would eliminate possible
incorrect conclusions or support the correct conclusions, respectively. Students could be assisted
by a supervisor specialist dealing with statistics.

SPECIFIC EXAMPLE

In the following text, we introduce one of possible solutions how the statistics could improve the
dissertation thesis to support the assessment of the experimental results. We selected thesis Surface
contamination control by using thermal desorption, which belongs to the study field Force and civil
protection and which was successfully defended in 20151. The thesis is publicly available in the
library of the University of Defence in Brno.

In the thesis, the possibility of using a decontamination chamber in combination with a portable
automatic spectrometer is analysed and subsequently experimentally verified. The thesis deals
with the control of the residual contamination (after decontamination) of surfaces contaminated
by toxic chemical agents. Based on the experiments and their results, optimal conditions for the
residual contamination control were proposed regarding the ambient temperature and the toxic
agent involved. Consequently, a methodological procedure for carrying out efficient checks on
decontamination in the chamber was established. The procedure can be used by the Integrated
Rescue System.

The issue described above is certainly interesting and its processing is highly beneficial. From our
professional point of view, it seems appropriate to support the experimental method, for example
by testing, which would clearly confirm the accuracy of the experiment. Based on the data from the
thesis, we are going to show how this work could be supplemented. For this purpose, we selected
the measurements of nerve agent substitutes (denoted as substance A) and blister agent substitutes
(denoted as substance B).

Let us start with one of the statements, which is connected with the data presented in Figure 1(a)
[4, p. 77]: “The response is considered plausible only in the case of three repetitions at the same or
higher level of response. In a measurement time interval from 30 to 102 seconds, the response of
the detector varies within a certain response interval, which is considered sufficient to demonstrate
the presence of the test substance.” Similarly for the other test substance (see Figure 1(b)), the

1The thesis was selected at random, it meets the required criteria for dissertation theses. We only want to show a
possible way of cooperation between experimenters and consultants, not to speak against the thesis.
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author of the thesis stated: “The response of the the detector lies in the time interval from 55 to 117
seconds.” [4, p. 79]

(a) substance A (b) substance B

Fig. 1. Measurements of the test substances

For the “untrained eye” of a reader, it might be difficult to see the mentioned intervals and the
plausibility of the response. Therefore, we would like to propose statistical support for this type of
assessment.

Numerical model

Concentration of a chemical substance is a continuous function of time. On the other hand, the
measurements are usually carried out at discrete time points only. Therefore, we obtain discrete
values, which represent a continuous function [8, 10].

The discretely measured data can be identified as a random sample of independent real-valued
functions on a closed real interval [13]. Observations at the discrete points are influenced by mea-
surement errors, which can be seen as a random variation around a smooth trajectory. Hence, the
functional data analysis (FDA) provides an appropriate statistical way to model the discretely mea-
sured data [7, 14]. In the FDA framework, the observations are taken as curves reconstructed from
the data, i.e. in simple words, one curve = one observation.

Several methods can be used for the reconstruction process, an individual function can be recon-
structed using parametric, nonparametric or semiparametric methods, for details see, e.g. [10, 5,
11, 12]. Parametric methods offer a simple evaluation of the reconstructed function. However,
applying polynomials, for example, brings a question how to select the order of the polynomial
to capture the overall course of the data but not to oversmooth them [6]. On the other hand, one
can use one of the nonparametric smoothing methods to reconstruct the individual curve, such as a
moving average or the loess function [2].
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For presentation purposes, we propose to apply smoothing splines (implemented in R [9]). The
smoothing spline is a piecewise polynomial function with a certain order of smoothness. It balances
a measure of goodness of fit of the function to the data and a measure of the smoothness (defined
by derivatives of the function) [3]. The resulting smoothed curves are displayed in Figure 2.

(a) substance A (b) substance B

Fig. 2. Smoothed curves of discrete measurements from Figure 1

Having estimated the curves, we can proceed to a statistical test, which confirms or disproves the
statements. The overall procedure is the same as in the univariate settings.

Statistical test

If we need to test the hypothesis that the mean function, m(t), is equal to a prespecified function,
µ0(t), we use the one sample test. The null hypothesis takes the formH : µ(t) ≡ µ0(t) for t ∈ [a, b]
and the alternative A : µ(t) 6= µ0(t) for some t ∈ [a, b]. Test statistics is similar to the one from the
univariate case

T =
m(t)− µ0(t)

v(t)
·
√
N,

where v(t) stands for the functional standard deviation and N is the number of the observations,
i.e. the number of curves. Under the null hypothesis, statistics T follows the Student t-distribution
with N − 1 degrees of freedom [14].

Classic summary statistics, needed for the test, apply equally to functional data. Mean function
m(t) is the average of functions fj(t) (j = 1, . . . , N)

m(t) =
1

N

N∑
j=1

fj(t),
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variance function v2(t) is defined similarly

v2(t) =
1

N − 1

N∑
j=1

[fj(t)−m(t)]2

and the standard deviation function is the square root of the variance function [10].

Statistical evaluation

Let us get back to the first part of the statement: “The response is considered plausible only in the
case of three repetitions at the same or higher level of response.” In other words, the function has to
be nondecreasing. This is equivalent to the condition of the first derivative being positive. Having
functional representation of the data, we can easily differentiate the curves and test the positivity of
the derivatives.

The derivatives of the estimated curves are presented in Figure 3. The mean functions of the
respective test substances with their confidence bands are shown in Figure 4.

(a) substance A (b) substance B

Fig. 3. First derivatives of the smoothed curves

The graphical result of the positivity test of the derivative of the test substance A is shown in
Figure 5(a). There is presented a critical region given by the quantiles of Student distribution (in
grey) and the resulting test statistics in its functional form. We can see that the derivative is positive
in the interval starting at 30 seconds. It indicates that the response is plausible after 30 seconds on
average from the beginning of the measurement.

Let us get a closer look to the other two statements from the thesis. For the substance A: “In a
measurement time interval from 30 to 102 seconds, the response of the instrument varies within
a certain response interval, which is considered sufficient to demonstrate the presence of the test
substance.” and for the substance B: “The response of the the detector lies in the time interval from
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(a) substance A (b) substance B

Fig. 4. Mean functions with their confidence bands

(a) substance A (b) substance B

Fig. 5. Test statistics (black line) and the critical regions (grey bands)

55 to 117 seconds.” While being difficult to read from the graphs in Figure 5, the statements can
be confirmed from the numerical values of the derivative test, see Table 1.

For the substance A, the derivative is different from zero mainly in the interval from 30 to 109
seconds (including the interval nearby the maximum), and for the substance B, from 38 to 117
seconds. The very short intervals at the beginning and at the end of the measurement can be
omitted, because these are the places where the standard deviation is large, see Figure 4.

Thus, we confirm the statements from the thesis. First, the plausible interval starts at 30 seconds
after beginning of the measurement of the substance A. Next, the whole interval, where the response
is considered sufficient, ends at 109 seconds. The difference between the stated value (102 s) and
calculated value (109 s) is negligible considering that the whole measurement takes approximately
two minutes. Last, for the substance B, the plausible interval ranges from 38 to 117 seconds. Again,
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Tab. 1. Intervals of positivity and negativity of the derivatives

substance positive derivative negative derivative
A (30, 57) (69, 109), (113, 121)
B (23, 31), (38, 80) (94, 117), (124, 126)

the difference between the stated value (55 s) and calculated value (38 s) is larger than in the case
of the substance A, however, it also can be considered negligible with respect to the length of the
measurement [1].

CONCLUSION

The dissertation thesis is the final work of postgraduate studies, which represent the highest level of
university studies. From the point of view of the education system, it is the most important written
document in the student’s study effort. Therefore, it has to be of adequate quality; moreover, it has
to bring new pieces of knowledge to the studied field. Last but not least, the students demonstrate
their ability to process a selected research problem with an interdisciplinary approach. This can be
significantly supported by the students’ cooperation not only with their supervisors but also with
other experts.

With the assistance of available scientific methods, in our case using the statistical approach, we
presented the way in which, with help of a consultant (statistics expert), it is possible to move some
dissertation theses to a higher scientific level and thus contribute to the fulfilment of the demanding
conditions imposed on theses.
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Abstract: When regarding the structure of the most commonly used artificial neural networks –
multilayer perceptron ones – and when discussing the functionality of artificial neurons, one can
use a certain analogy with relations between descriptions of differential equations of a certain
type. In this contribution we analyze powers of differential neurons and present a construction of
a countably infinite cyclic semigroup of powers of artificial differential neurons as the basis of a
further investigation of some other structures.

Keywords: Artificial differential neuron, cyclic semigroup, powers of differential neurons.

INTRODUCTION

Though semigroups are very simple structures (sets with one associative binary operation) the
algebraic theory of semigroups belongs to classical algebraic structure theories with deep meaning
and numerous applications – cf. [1, 4, 8, 10, 12, 16]. If a is any element of a semigroup (S, ·), then
the subsemigroup 〈a〉 of (S, ·) is generated by a and consists of all the positive integral powers of
a:

〈a〉 = {a, a2, a3, . . . }.
If 〈a〉 = S, then (S, ·) is called a cyclic semigroup. In a general case, we say that 〈a〉 is the cyclic
subsemigroup of (S, ·) generated by a. There are only two possibilities:

(1) No two powers of a are equal. Then evidently the element a has (countably) infinite order.

(2) There exist positive integers r and s with r < s such that ar = as. Then a has a finite order.
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Recall e.g. in the theory of semigroup algebras one result of Amitsur [1]: if (S, ·) is the infinite
cyclic semigroup generated by x, then the algebra Φ[S1] (where S1 = S ∪ e) of S1 over a field Φ is
the ring of polynomials Φ[x] in x over Φ. See also [4] p. 159. Numerous further interesting results
can be found in the above mentioned classical monograph [4].

In this contribution we construct the semigroup of differential neurons of infinite order. More-
over, we construct the neutral element corresponding to the neuron D0Nep(~w) in order to obtain a
monoid, in fact. This structure is in [4] denoted by S1. Consideration obtained in this contribution
lead to constructions of cyclic hypergroups; for these see e.g. [5, 11, 15, 20, 21]

Let us begin with the fact that a neuron, called also artificial or formal neuron, is the basic stone
of the mathematical model of any neural network. It is to be noted that its design and functionality
are derived from observations of biological neurons which are basic building blocks of biological
neural networks such as the brain, spinal cord and peripheral ganglia. In the case of artificial –
formal neurons, the information comes into the body of the neuron via inputs that are weighted,
i.e., each input can be individually multiplied by a weight. The body of an artificial neuron then
sums the weighted inputs and bias and “processes” the sum with a transfer function – cf. [2, 3, 6,
9, 10, 13, 17, 18, 19].

At the end, an artificial neuron passes the processed information via outputs (output functions).
One can say that artificial neural networks can be viewed as weighted directed graphs in which
artificial neurons are nodes and directed edges with weights are connections between neuron inputs
and neuron outputs. Recall that in the framework of artificial neural networks there are networks
of simple neurons called perceptrons. The basic concept of a single perceptron was introduced by
Rosenblatt in 1958. Perceptrons compute single outputs (the output function) from multiple real-
valued inputs by forming a linear combination according to its input weights, and then possibly
putting the output through some nonlinear activation function. Mathematically, this can be written
as

y(t) = ϕ

(
n∑
i=1

wi(t)xi(t) + b

)
= ϕ

(
~wT (t)~x(t) + b

)
,

where ~w(t) = (w1(t), . . . , wn(t)) denotes the vector of time dependent weight functions,
~x(t) = (x1(t), . . . , xn(t)) is the vector of time dependent (or time varying) input functions, b is
the bias and ϕ is the activation function. The use of time varying functions as weights and inputs
is a certain generalization of the classical concept of artificial neurons from the work of Warren
McCulloch and Walter Pitts (1943); see also references mentioned above.

1 DIFFERENTIAL NEURONS AND THEIR OUTPUT FUNCTIONS

In what follows, we will consider a certain generalization of classical artificial neurons mentioned
above such that inputs xi and weights wi will be functions of argument t belonging into a linearly
ordered (tempus) set T with the least element 0. As the index set we use the set C(J) of all con-
tinuous functions defined on an open interval J ⊂ R. So, denote by W the set of all non-negative
functions w : T → R forming a subsemiring of the ring of all real functions of one real variable
x : R→ R. Denote by Ne(~wr) = Ne(wr1, . . . , wrn) for r ∈ C(J), n ∈ N the mapping

yr(t) =
n∑
k=1

wr,k(t)xr,k(t) + br
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which will be called the artificial neuron with the bias br ∈ R. By AN(T ) we denote the collection
of all such artificial neurons.

Neurons are usually denoted by capital lettersX, Y orXi, Yi, nevertheless we use also notation
Ne(~w), where ~w = (w1, . . . , wn) is the vector of weights.

We suppose – for the sake of simplicity – that transfer functions (activation functions)ϕ, σ(or f)
are the same for all neurons from the collection AN(T ) or that this function is the identity function
f(y) = y.

Now, similarly as in the case of the collection of linear differential operators, we will construct
a group and hypergroup of artificial neurons. Concerning the concept of a hypergroup, see e.g.
[7, 9, 14, 15, 20].

Denote by δij the so called Kronecker delta, i, j ∈ N, i.e., δii = δjj = 1 and δij = 0, whenever
i 6= j.

SupposeNe(~wr), Ne(~ws) ∈ AN(T ), r, s ∈ C(J), ~wr = (wr1, . . . , wr,n), ~ws = (ws1, . . . , ws,n),
n ∈ N. Let m ∈ N, 1 ≤ m ≤ n be a such an integer that wr,m > 0. We define

Ne(~wr) ·m Ne(~ws) = Ne(~wu),

where
~wu = (wu,1, . . . , wu,n) = (wu,1(t), . . . , wu,n(t)),

wu,k(t) = wr,m(t)ws,k(t) + (1− δm,k)wr,k(t), t ∈ T

and, of course, the neuron Ne(~wu) is defined as the mapping yu(t) =
n∑
k=1

wk(t)xk(t) + bu,

t ∈ T, bu = brbs. Further for a pair Ne(~wr), Ne(~ws) of neurons from AN(T ) we put

Ne(~wr) ≤m Ne(~ws), wr = (wr,1(t), . . . , wr,n(t)), ws = (ws,1(t), . . . , ws,n(t))

ifwr,k(t) ≤ ws,k(t), k ∈ N, k 6= m and wr,m(t) = ws,m(t), t ∈ T and with the same bias.

Remark 1. A certain generalization of the formal (artificial) neuron can be obtained from linear
differential operators of the n-th order. Recall the expression of formal neuron with inner po-

tential y−in =
n∑
k=1

wk(t)xk(t), where ~x(t) = (x1(t), . . . , xn(t)) is the vector of inputs, ~w(t) =

(w1(t), . . . , wn(t)) is the vector of weights. Using the bias b of the considered neuron and the

transfer function σ we can expressed the output as y(t) = σ

(
n∑
k=1

wk(t)xk(t) + b

)
.

Now consider a tribal function u : J → R, where J ⊆ R is an open interval; inputs are derived
from the function u ∈ Cn(J) as follows:
x1(t) = u(t), x2 = du(t)

dt
, . . . , xn(t) = dn−1(t)

dtn−1 , n ∈ N. Further the bias b = b0
dnu(t)
dtn

. As weights we
use continuous functions wk : J → R, k = 1, . . . , n− 1.

Then formula

y(t) = σ

(
n∑
k=1

wk(t)
dk−1u(t)

dtk−1
+ b0

dnu(t)

dtn

)
is a description of the action of the neuron Dn which will be called a formal (artificial) differential
neuron. This approach allows to use solution spaces of corresponding linear differential equations.
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2 PRODUCTS AND POWERS OF DIFFERENTIAL NEURONS

Suppose ~w(t) = (w1(t), . . . , wn(t)) are fixed vectors of continuous functions wk : R → R and
b0 be the bias for any polynomial p ∈ Rs[t], n ≤ s, s ∈ N0. We consider a differential neuron
DNep(~w) by the action

y1(t) =
n∑
k=1

w1,k(t)
dk−1p(t)

dtk−1
+ b0

dnp(t)

dtn

with the identity activation function ϕ(u) = u. According to the formula, we can calculate the
output function of the differential neuron D2Nep(~w) = DNep(~w) ·DNep(~w).

The product of neurons Ne(~wr) ·Ne(~ws) = Ne(~wu); outputs of neurons

yr(t) =
n∑
k=1

wr,k(t)xk(t) + br, ys(t) =
n∑
k=1

ws,k(t)xk(t) + bs.

The vector of weights of the neuron Ne(~wu) is of the form ~wu(t) = (wu,1, . . . , wu,n), where

wu,k(t) = wr,m(t)ws,k(t) + (1− δm,k)wr,k(t), t ∈ T and 1 ≤ m ≤ n.

Then the neuron Ne(~wu) is defined as the function yu(t) =
n∑
k=1

wu,k(t)xk(t) + brbs, t ∈ T.

In more detail:
wu,1(t) = wr,m(t)ws,1(t) + wr,1(t),

wu,2(t) = wr,m(t)ws,2(t) + wr,2(t),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wu,m(t) = wr,m(t)ws,m(t),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wu,n(t) = wr,m(t)ws,n(t) + wr,n(t).

Application of the above product onto the case of differential neurons: DNep(~wr), DNep(~ws)

with output functions yr(t) =
n∑
k=1

wr,k(t)
dk−1p(t)
dtk−1 + br

dnp(t)
dtn

, ys(t) =
n∑
k=1

ws,k(t)
dk−1p(t)
dtk−1 + bs

dnp(t)
dtn

,

where p ∈ Rl[t], n ≤ l. Denote DNep(~wu) = DNep(~wr) · DNep(~ws). Then the output function
of the neuron DNep(~wu) has the form

yu(t) =
n∑
k=1
k 6=m

(wr,m(t)ws,k(t) + wr,k(t))
dk−1p(t)

dtk−1
+ wr,m(t)ws,m(t)

dm−1p(t)

dtm−1
+ (∗)

+brbs

(
dnp(t)

dtn

)2

.
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Now, using the above formula we can express output functions of powersD2Nep(~wr), D
αNep(~wr)

(for α ∈ N) andD0Nep(~wr) (the neutral element – unit) of the infinite cyclic group {DαNep(~wr); α ∈
Z}. The output function y[2]u (t) of the differential neuron is of the form

y[2]u (t) =
n∑
k=1
k 6=m

(wr,m(t) + 1)wr,k(t))
dk−1p(t)

dtk−1
+ w2

r,m(t)
dm−1p(t)

dtm−1
+ b2r

(
dnp(t)

dtn

)2

=

= (wr,m(t) + 1)
n∑
k=1
k 6=m

wr,k(t))
dk−1p(t)

dtk−1
+ w2

r,m(t)
dm−1p(t)

dtm−1
+ b2r

(
dnp(t)

dtn

)2

.

Theorem 1. Consider a differential neuron DNep(~w) with the vector ~w(t) = (w1(t), . . . , wn(t))

of time variable weights and the vector of inputs ~x(t) = (p(t), dp(t)
dt
, . . . , d

np(t)
dtn

) with polynomial
p ∈ Rl[t], n ≤ l, t ∈ T and 1 ≤ m ≤ n, n ∈ N = {1, 2, . . . }. The output function y(t) of the
above mentioned neuron is of the form

y(t) =
n∑
k=1

wk(t)
dk−1p(t)

dtk−1
+ b

dnp(t)

dtn

with the bias bd
np(t)
dtn

. Suppose α ∈ N, 2 ≤ α. Then the output function of the differential neuron
DαNep(~w) has the form

y[α](t) =
α−1∑
k=0

wkm(t)
n∑
k=1
k 6=m

wk(t)
dk−1p(t)

dtk−1
+ wα−1m (t)

dm−1p(t)

dtm−1
+

(
b
dnp(t)

dtn

)α
.

Proof. Consider a differential neuron DNep(~w) with the output function

y(t) =
n∑
k=1

wk(t)
dk−1p(t)

dtk−1
+ b

dnp(t)

dtn
.

For α = 2 we had obtained above the form of the output function

y[2](t) = (wm(t) + 1)
n∑
k=1
k 6=m

wk(t)
dk−1p(t)

dtk−1
+ w2

m(t)
dm−1p(t)

dtm−1
+

(
b
dnp(t)

dtn

)2

.

Suppose α ∈ N, 2 ≤ α and

y[α](t) =
α−1∑
k=0

wkm(t)
n∑
k=1
k 6=m

wk(t)
dk−1p(t)

dtk−1
+ wα−1m (t)

dm−1p(t)

dtm−1
+

(
b
dnp(t)

dtn

)α
.

We will calculate the output function of the differential neuron Dα+1Nep(~w). According to the

formula (∗) we have ws,k(t) =
α−1∑
k=0

wkm(t)wk(t) and thus

y[α+1](t) =
n∑
k=1
k 6=m

((
wm(t)

α−1∑
k=0

wkm(t)

)
wk(t) + wk(t)

)
dk−1p(t)

dtk−1
+ wm(t)wα−1m (t)

dm−1p(t)

dtm−1
+
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+b
dnp(t)

dtn

(
b
dnp(t)

dtn

)α
=

n∑
k=1
k 6=m

wm(t)
((
wα−1m (t) + wα−2m (t) + · · ·+ wm(t) + 1

)
+ 1
)
wk(t)

dk−1p(t)

dtk−1
+

+wαm(t)
dm−1p(t)

dtm−1
+

(
b
dnp(t)

dtn

)α+1

=

=
α∑
k=0

wkm(t)
n∑
k=1
k 6=m

wk(t)
dk−1p(t)

dtk−1
+ wαm(t)

dm−1p(t)

dtm−1
+

(
b
dnp(t)

dtn

)α+1

,

which is the output function for the power Dα+1Nep(~w). The proof is complete.

Example. Here we resent the output function of the power of the differential neuronDαNep(~w)
determined by values n = 5, m = 4 and α = 3. Moreover, consider the polynomial p(t) =

t5 + a4t
4 + a3t

3 + a2t
2 + a1t+ a0, ak, t ∈ R, i.e., p(t) =

5∑
k=0

akt
k with a5 = 1.

We have ~w(t) = (w1(t), . . . , w4(t), w5(t)), t ∈ T, which is the vector function of weights, thus
the output function of the neuron DNep(~w) has the form

y(t) =
5∑

k=1

wk(t)
dk−1p(t)

dtk
+ b

d5p(t)

dt5
.

Since dp(t)
dt

= 5t4 + 4a4t
3 + 3a3t

2 + 2a2t+ a1,
d2p(t)
dt2

= 20t3 + 12a4t
2 + 6a3t+ 2a2,

d3p(t)
dt3

= 60t2 + 24a4t+ 6a3,
d4p(t)
dt4

= 120t+ 24a4,
d5p(t)
dt5

= 120, we obtain

y(t) = w1(t)(t
5+

4∑
k=1

akt
k+a0)+w2(t)(5t

4+
3∑

k=1

kakt
k−1)+w3(t)(20t3+

2∑
k=1

(k+1)kak+1t
k−1)+

+6w4(10t2 + 4a4t+ a3) + 24w5(t)(5t+ a4) + 120b.

Then from Theorem 2 there follows that the output function of the neuron D3Nep(~w) has the form

y[3](t) =
2∑

k=0

wk4(t)
5∑

k=1
k 6=4

wk(t)
dk−1p(t)

dtk−1
+ w2

4(t)
d3p(t)

dt3
+ (b

d5p(t)

dt5
)3 =

= (w2
4(t) + w4(t) + 1)[w1(t)(t

5 +
4∑

k=1

akt
k + a0) + w2(t)(5t

4 +
3∑

k=1

kakt
k−1)+

+w3(t)(20t3 +
2∑

k=1

(k + 1)kak+1t
k−1) + 24w5(t)(5t+ a4)] + 6w4(t)(10t2 + 4a4t+ a3) + (120b)3,

where (120b)3 = 1728000b3.
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3 IDENTITY ELEMENT AND CYCLIC SEMIGROUP OF DIFFERENTIAL NEURONS

In what follows, we will construct a differential neuron which is the neutral element with respect
to the product operation “·” defined for neurons DαNep(~w), α ∈ N.

Consider a differential neuron DNep(~w), where ~w(t) = (w1(t), . . . , wm(t), . . . , wn(t)), with
the output function

y(t) =
n∑
k=1

wk(t)
dk−1p(t)

dtk−1
+ b0

dnp(t)

dtn
,

with the bias b0 and p ∈ Rs[t], n ≤ s, s ∈ N. We denote by N1(~e)m (instead of D0Nep(~w)) a
neuron such that

N1(~e)m ·m DNep(~w) = DNep(~w) ·m N1(~e)m = DNep(~w).

Here we have ~e(t) = (e1, e2, . . . , em, . . . , en), where ek = 0 for any k ∈ {1, 2, . . . , n}, k 6=
m, em = 1 and with the bias b1 = 1. The output function corresponding to the neuron N1(~e)m is
of the form

y1(t) =
dm−1p(t)

dtm−1
+ 1

for any p ∈ Rs[t], t ∈ T, n ≤ s.

Theorem 2. Let DNep(~w) be a differential neuron, with the vector of weights
~w(t) = (w1(t), . . . , wm(t), . . . , wn(t)), the output function

y(t) =
n∑
k=1

wk(t)
dk−1p(t)

dtk−1
+ b0

dnp(t)

dtn
,

with the bias b0 and p ∈ Rs[t], n ≤ s, s ∈ N.
Then

DNep(~w) ·m N1(~e)m = DNep(~w) = N1(~e)m ·m DNep(~w). (1)

Proof. Consider differential neurons DNep(~wr), DNep(~wv) and denote

DNep(~wu) = DNep(~wr) ·m DNep(~wv).

Further, let ~wv(t) = (wv,1(t), . . . , wv,m(t), . . . , wv,n(t)). According to the above defined product of
neurons, the output function of the neuron DNep(~wu) is of the form

yu(t) =
n∑
k=1
k 6=m

wu,k(t)
dk−1p(t)

dtk−1
+ wu,m(t)

dm−1p(t)

dtm−1
+ brbv

(
dnp(t)

dtn

)2

,

thus

yu(t) =
n∑
k=1
k 6=m

(wr,m(t)wv,k(t) + wr,k(t))
dk−1p(t)

dtk−1
+ wr,m(t)wv,m(t)

dm−1p(t)

dtm−1
+ brbv

(
dnp(t)

dtn

)2

.
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Now, consider the product of neurons DNep(~w) (with ~w(t) = (w1(t), . . . , wm(t), . . . , wn(t))
and the bias b) andN1(~e)m.DenoteDNep(~wu) = DNep(~w)·mN1(~e)m. Suppose y(t) is the output
function ofDNep(~w). Then according to the above equalities the output function of the differential
neuron DNep(~wu) has the form

yu(t) =
n∑
k=1
k 6=m

(wm(t) · 0 + wk(t))
dk−1p(t)

dtk−1
+ wm(t)

dm−1p(t)

dtm−1
+ b

dnp(t)

dtn
=

=
n∑
k=1
k 6=m

wk(t)
dk−1p(t)

dtk−1
+ wm(t)

dm−1p(t)

dtm−1
+ b

dnp(t)

dtn
=

=
n∑
k=1

wk(t)
dk−1p(t)

dtk−1
+ b

dnp(t)

dtn
= y(t),

hence DNep(~wu) = DNep(~w).
Further, denote DNep(~wv) = DN1(~e)m ·mDNep(~w). With respect to the above consideration

we have the output function yv of the neuron DNep(~wv) in the form

yv(t) =
n∑
k=1
k 6=m

(emwk + ek)
dk−1p(t)

dtk−1
+ emwm(t)

dm−1p(t)

dtm−1
+ b

dnp(t)

dtn
=

=
n∑
k=1
k 6=m

(wk(t) + 0)
dk−1p(t)

dtk−1
+ wm(t)

dm−1p(t)

dtm−1
+ b

dnp(t)

dtn
=

=
n∑
k=1

wk(t)
dk−1p(t)

dtk−1
+ b

dnp(t)

dtn
= y(t),

for any t ∈ T, i.e., DNep(~wv) = DNep(~w). Consequently, we obtain

DNep(~w) ·m N1(~e)m = DNep(~w) = N1(~e)m ·m DNep(~w).

Corollary. Let DNep(~w) be a differential neuron, m,n ∈ N, 1 ≤ m ≤ n. Then for any positive
integer α ∈ N we have

DαNep(~w) ·m N1(~e)m = DαNep(~w) = N1(~e)m ·m DαNep(~w), (2)

where p ∈ Rs[t], n ≤ s, s ∈ N, t ∈ T.

Proof. We use method of the mathematical induction.

I. Suppose that α = 1. Then equalities (2) for α = 1 are given by the above Theorem 2.
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II. Suppose that α ∈ N, 1 ≤ α and equalities (2) hold. Then, with respect to Theorem 2,

Dα+1Nep(~w) ·m N1(~e)m = DαNep(~w) ·m DNep(~w) ·m N1(~e)m =

= DαNep(~w) ·m DNep(~w) = Dα+1Nep(~w) = DNep(~w) ·m DαNep(~w) =

= N1(~e)m ·m DNep(~w) ·m DαNep(~w) = N1(~e)m ·m Dα+1Nep(~w).

As a result, we obtain that

(S1, ·m) = ({N1(~e)m} ∪ {DαNep(~w); α ∈ N}, ·m)

is a countable infinite cyclic semigroup with the identity (neutral element) N1(~e)m – i.e., a monoid
in fact – generated by the differential neuron DNep(~w).

CONCLUSION

As we have already mentioned in the Introduction, semigroups are significant and applicable al-
gebraic structures in spite of their simplicity. In connection with the theory of neural networks
and the theory of linear ordinary differential operators, we have constructed a semigroup with an
identity element of differential neurons. This is the first step to construction of cyclic groups of the
mentioned neurons and to constructions of cyclic hypergroups discussed e.g. in [5, 11, 15, 20, 21].

Author Contributions: Contributions of all authors of this paper are equal.
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ON THE SUMMABILITY OF NON-CONVERGENT SEQUENCES
OF ELEMENTS OF BANACH SPACE
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Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava
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Abstract: The aim of this article is to show that by the regular matrix transformation could a di-
vergent sequence of elements of Banach space become convergent.

Keywords: Banach space, matrix transformation, convergence, summability.

INTRODUCTION

Let (X, ‖·‖) be an arbitrary Banach space. The elements of Banach space we denote by α, β, . . . ,
the zero element by Θ and the unit element by ε, where ‖ε‖ = 1. The sequence α = (αn), αn ∈ X ,
n = 1, 2, . . . converges to β ∈ X if for every ε > 0 there exists n0 ∈ N such that for all n > n0

implies ‖αn − β‖ < ε.

The sequence α = (αn), αn ∈ X , n = 1, 2, . . . is called a Cauchy-sequence if for every ε > 0
there exists n0 ∈ N such that for all i, j > n0 the inequality ‖αi − αj‖ < ε holds.

It is well known, if (X, ‖·‖) is a Banach space that every Cauchy sequence is convergent in X (see
[3], [4] and [9]).

Let A = (amn) (m,n = 1, 2, . . . ) be an infinite matrix of real numbers. A sequence α = (αn),
where αn ∈ X for all n = 1, 2, . . . is said to be A-limitable (limitable by a method (A)) to an ele-
ment a ∈ X , if limm→∞ βm = a, where βm =

∑∞
n=1 amnαn. If a sequence α = (αn) is A-limitable

to the element a, we write A-limn→∞ αn = a. The method (A) defined by the matrix A is said
to be regular if limn→∞ αn = a implies A-limn→∞ αn = a (see [9], [10]). If the method (A) is
regular then the matrix A is called regular transformation matrix or in short regular matrix. For
more details and examples let see [6] or [7].

The case of non-regular matrix transformation of sequences of elements of Banach space was in-
vestigated in [11]. There was proved that a matrix which transforms every bounded sequence into
a convergent sequence of elements of Banach space i.e. Schur matrix can not be regular.

Recall, that the above-mentioned limitation method is a generalization of the notion of convergence
of sequences. The latest results about convergence field of regular matrix transformation can be
found in [12].
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1 MAIN RESULT

For the sequences of elements of Banach space we have the following theorem.

Theorem 1. Let A = (amn) be an infinite matrix of real numbers. The sequence

βm =
∞∑
n=1

amnαn

converges to a for m→∞ and αn → a if and only if the following conditions hold:

a) there is a constant K such that
∑∞

n=1 |amn| ≤ K for every m = 1, 2, . . . ,

b) for every n = 1, 2, . . . , limm→∞ amn = 0,

c) limm→∞
∑∞

n=1 amn = 1.

Proof. See [10].

The infinite matrix A = (amn) of real numbers is regular if and only if it satisfies each condition
of previous theorem (see [6]). In [5] was proved that the conditions of Theorem 1 are independent,
i.e. by omitting any condition from Theorem 1 the matrix A = (amn) becomes non-regular.

In [2], the Steinhaus theorem is proved under the condition that there does not exist a regular matrix
which limits all sequences of 0’s and 1’s. Now we will show an analogue of the Steinhaus theorem
for sequences of elements of X . Let us define the set

Ω = {α = (αk) : αk ∈ X, k = 1, 2, . . . , ∀k = 1, 2, . . . ‖αk‖ = 0 ∨ ‖αk‖ = 1} ,

which is the set of all sequences of elements of X with norm either zero or one (see [9]).

In the following theorem, we give a sufficient condition to the existence of at least one divergent
sequence from Ω which is limitable by a matrix transformation. R. P. Agnew has given in [1]
a similar simple sufficient condition that a regular matrix shall sum a divergent sequence of real
numbers.

Theorem 2. If the matrix A = (ank) is such that

∞∑
k=1

|ank| <∞, n = 1, 2, . . . , (1)

lim
n→∞

max
k=1,2,...

|ank| = 0, (2)

then there is at least one divergent sequence, whose elements of space Ω, which is summable
(limitable) by matrix A = (ank).
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Proof. Let A = (ank) be a matrix satisfying (1) and (2). We show that a sequence of elements of
space Ω, where (X, ‖·‖) is a Banach space, will limitable by A = (ank) and its limit will the zero
element Θ of space X .

Let b1, b2, . . . be a sequence, of positive numbers, which converges to 0 so rapidly than nbn (e.g.
bn = 1

n2 ). Let c1, c2, . . . be a sequence, of positive numbers such that limn→∞ cn = 0.

The condition (2) implies existence of an increasing sequence n1 < n2 < · · · of positive integers
such that, for each p = 1, 2, . . .

|ank| ≤ bp, n ≥ np, k = 1, 2, . . . . (3)

Such a sequence (np) being fixed, the condition (1) implies that if k1 < k2 < · · · is a sequence of
integers which becomes infinite sufficiently rapidly, then for each p = 1, 2, . . .

∞∑
k=kp+1

|ank| ≤ cp, np ≤ n ≤ np+1. (4)

Let a sequence (kp) be fixed such that (4) holds and kp+1 > kp + 1 for each p = 1, 2, . . . . Let
ξ = (ξk) ∈ Ω be the particular sequence of elements of Ω defined by the following way:

ξk =

{
ε, k = k1, k2, . . . ,

Θ, otherwise,

where ε is the unit element of Ω and ‖ε‖ = 1, Θ is the zero element of Ω and ‖Θ‖ = 0.

The sequence ξ = (ξk) is divergent according to the norm ‖·‖ in Ω. Moreover for the transformation
of this sequence µ = (µn) we have

‖µn‖ =

∥∥∥∥∥
∞∑
k=1

ankξk

∥∥∥∥∥ ≤
∞∑
k=1

|ank| ‖ξk‖

=
∞∑
j=1

∣∣ankj ∣∣ ‖ε‖
≤

p∑
j=1

∣∣ankj ∣∣+
∞∑

j=p+1

∣∣ankj ∣∣
≤

p∑
k=1

bj +
∞∑

k=kp+1

|ank|

< pbp + cp,

where p = 1, 2, . . . and np ≤ n < np+1. Therefore since pbp → 0 and cp → 0 we have ‖µn‖ → 0.
Therefore the sequence µ = (µn) converges to Θ. Hence we found a divergent sequence of space
Ω which is summable by matrix A = (ank).
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Example 1. Define the matrix Z 1
2

= (zmn) so that z11 = 1
2
, z1n = 0 for n = 2, 3, . . . , if m = n

then zmn = zmn+1 = 1
2

and finally zmn = 0 otherwise. This matrix has the following form

Z 1
2

=


1
2

0 0 0 · · · 0 · · ·
0 1

2
1
2

0 · · · 0 · · ·
0 0 1

2
1
2
· · · 0 · · ·

...
...

...
...

...
... . . .

 .

The matrix Z 1
2

satisfies each condition of Theorem 1 so it is regular but does not satisfy condition
(2). Let (L1, ‖·‖) is the Banach space of Lebesgue integrable functions on the interval [0, 1] with
the norm ‖f‖ =

∫ 1

0
|f(x)| dx. Let us define the sequence f = (fn)∞n=1, where fn ∈ L1 for all

n = 1, 2, . . . in the following way:

f2k(x) =

{
1, x ∈ Q ∩ [0, 1],

0, x ∈ R \Q ∩ [0, 1],

f2k−1(x) =

{
0, x ∈ Q ∩ [0, 1],

1, x ∈ R \Q ∩ [0, 1],

where k = 1, 2, . . . . It is clear that the sequence f = (fn)∞n=1 does not converge with respect to the

norm ‖·‖ in L1. Create a sequence
(
Z 1

2
fn

)∞
n=1

. Then the transformed sequence we can express as

(gm)∞m=1 =


1
2

0 0 0 · · · 0 · · ·
0 1

2
1
2

0 · · · 0 · · ·
0 0 1

2
1
2
· · · 0 · · ·

...
...

...
...

...
... . . .


f1f2

...


=

(
1

2
f1,

1

2
(f2 + f3) , . . . ,

1

2
(f2k + f2k+1) ,

1

2
(f2k+1 + f2k+2) , . . .

)
=

(
1

2
f1,

1

2
,
1

2
,
1

2
, . . .

)
.

The sequence g = (gm)∞m=1 converges according to the norm ‖·‖ in L1 to the constant function
g(x) = 1

2
for all x ∈ [0, 1].

The previous example shows, that Theorem 2 gives only sufficient conditions to the existence of at
least one divergent sequence in Ω which is summable by matrix A = (ank).

The above mentioned matrix is not Schur since it is regular (see [6]), but it transforms bounded
sequence to convergent (see [11]).

In [9] was proved a generalization of Steinhaus theorem for sequences of a Banach space and
showed that the result of [4] and [8] can be generalized for a space of sequences of element of a
Banach space. In the following theorem, we show a more generalization for an arbitrary norm.

Theorem 3. For any regular matrix A = (ank) there exists a sequence in the set Ω, which is not
limitable (summable) by matrix A = (ank).

84



Proof. The matrix A = (ank) is regular, so it satisfies the conditions a)–c) of Theorem 1. On the
base of condition c) we can choose such an index n1 that

∞∑
k=1

an1k >
3

4
.

Similarly, by using condition a) we can choose an index m1 such that

∞∑
k=m1+1

|an1k| <
1

24
.

Let us define the sequence α = (αk) ∈ Ω in the following way:

αk =

{
ε, 1 ≤ k ≤ m1,

Θ or ε, k > m1,

where ε is the unit element of Ω with ‖ε‖ = 1 and Θ is the zero element of Ω with ‖Θ‖ = 0.

Consider a series

βn1 =
∞∑
k=1

an1kαk,

then for its norm we get

‖βn1‖ =

∥∥∥∥∥
∞∑
k=1

an1kαk

∥∥∥∥∥ ≥
∞∑
k=1

an1k ‖ε‖ −
∞∑

k=m1+1

|an1k| ‖αk‖

≥
∞∑
k=1

an1k − 2
∞∑

k=m1+1

|an1k|

>
3

4
− 2 · 1

24
=

2

3
.

By using the condition b) we can choose such an index n2 that n2 > n1 and
∑m1

k=1 |an2k| < 1
6
. Then

we can find m2 > m1 for which
∑∞

k=m2+1 |an2k| < 1
6

holds, through the condition a). Now, if we
define the sequence α = (αk) ∈ Ω in the following way

αk =


ε, 1 ≤ k ≤ m1,

Θ, m1 < k ≤ m2,

Θ or ε, k > m2,

then for the norm of βn2 we get

‖βn2‖ =

∥∥∥∥∥
∞∑
k=1

an2kαk

∥∥∥∥∥ ≤
m2∑
k=1

an2k ‖ε‖+
∞∑

k=m2+1

|an2k| ‖αk‖ <
1

6
+

1

6
=

1

3
.
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By continuing the steps, we can choose such an index n3 that n3 > n2,
∑∞

k=1 an3k > 3
4

and∑m2

k=1 |an3k| < 1
24

. Then we can find m3 > m2 for which
∑∞

k=m3+1 |an3k| < 1
48

holds. Now, if we
define the sequence α = (αk) ∈ Ω as

αk =


ε, 1 ≤ k ≤ m1,

Θ, m1 < k ≤ m2,

ε, m2 < k ≤ m3,

Θ or ε, k > m3,

then for the norm of βn3 we get

‖βn3‖ =

∥∥∥∥∥
∞∑
k=1

an3kαk

∥∥∥∥∥ ≥
∞∑
k=1

an3k ‖ε‖ −
m2∑

k=m1+1

|an3k| ‖αk‖ − 2
∞∑

k=m3+1

|an3k| ‖αk‖

>
3

4
− 1

24
− 2 · 1

48
=

2

3
.

If we follow the steps above, we construct such a sequence α = (αk) ∈ Ω, that for the norm of
transformed sequence we get∥∥βn2l−1

∥∥ > 2

3
and ‖βn2l

‖ < 1

3
, l = 1, 2, . . . .

Therefore the sequence β = (βn) is not convergent according to the norm ‖·‖. Then the sequence
α = (αn) is not summable by the regular matrix A = (ank).

CONCLUSION

In this article, we have shown some results about the method of matrix limitation of divergent
sequences of an arbitrary Banach space, which by using a regular matrix transformation become
convergent with respect to the norm. Finally, we have created an example, where we have shown
the Theorem 2 gives only sufficient conditions to the existence of at least one divergent sequence
in Banach space, which is summable by regular matrix. The Steinhaus theorem was also proved
in a Banach space i.e. for any regular matrix we can find a sequence of elements of Banach space
which is not limitable by the matrix.
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Abstract: Some special strategies are used. They permit to receive information about 

positions as sample data or in continuous way. The first player is able to pay an additional 

payment to partner. The payment influences on the character of the regime of the information 

reception about the game going. The influence is investigated.  

 

Keywords: differential non – antagonistic game, information reception, equilibrium, 

additional payment. 

 

INTRODUCTION  

 

 As a rule, the most favourable regime of the information reception   exists for a system of the 

dynamical processes control. Under this regime the system controls the processes in a best way 

and does not depreciate prematurely. So, it is clear how important and actual to investigate the 

optimum regimes of information receipt by means of the dynamic games. 

Chernousko F.L., Melikjan A.A., Kononenko A.F., Mokhonko E.Z., [1] investigated how 

receive the same result using the sample data information instead of the continuous reception   

of information. 

In this paper some differential game is considered. The first player is able to pay additional 

payment to the second player, if the second player does not deviate from the agreed trajectory. 

The equilibrium situation is constructed in r-strategies with a possibility to pay an additional 

payment. The payment changes the character of information receipt about trajectory. For 

example, it is getting possible to receive information about the equilibrium trajectory not 

countable times but the finite number times only. 

The aim of the article is to clarify the character of changes of the information receipt about 

equilibrium trajectory under real or supposed changes of additional payment.  

I. DESCRIPTION OF THE DIFFERENTIAL GAME 

 

Let consider some differential non - antagonistic game of two players 

( ), , ,x f x t u v = , 
0

t Tt   ,                                                                                                     (1) 

( ) 0

0
x t x= ,                                                                                                                               (2) 

 u P , v Q ,                                                                                                                           (3) 

( )( )
1 1
( , )u v x TgI = , ( )( ) ( )( )

2 2
( , )u v x T U x TgI = + .                                                         (4) 

 
Нere x  is n - dimensional vector  of state, u  and v are p - and q - dimensional vector -  

functions  of control. Players 1 and 2 choose the meaning of the functions in order to maximize 

the appropriate cost functions ( )( )
1 1
( , )u v x TgI = , ( )( ) ( )( )

2 2
( , )u v x T U x TgI = +  . 

Player 1 uses the controlu , player 2 uses the controlv ,  
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1
g and

2
g  are the continuous functions. 

The sets P and Q are compacts in the appropriate vector spaces. The vector-function 

( ), , ,f x t u v  is continuous function of all its arguments and satisfies restrictions which are 

imposed on it in [2].  The condition of existence the saddle point in the little game [3] is 

fulfilled. , ,f u v  have , ,n p q -components respectively. 

( )( )
( )

( )

0

0

0

0,

0,

u

u

x T
U x T

x T

U x

x

  =
= 



. If 
0

0U  , then ( )( )U x T  is additional payment. The 

player 1 pays it to the second player if   the trajectory of game is 
0u

x at the end of the game. If 

0
0U = , then the game without the additional payment is considered. 

The set of permissible strategies of every player ,U V is the set of measurable for every 

argument positional ( , ), ( , )u x t v x t  and program ( ), ( )u t v t  controls.  In addition to this some 

special strategies ,u v are permissible. They are called r − strategies [1, 4].  

Let remind the definition of r-strategies. 

Definition: r − strategy u of player 1 is called the pair ( )( ), .u r u= . It puts into 

correspondence to every point ( ),x t the non - negative number 0r  . 

  If 0r  , then the pair puts into correspondence to ( ),x t  the measurable function ( )u  ,  

( ) ( ) ( ) ( ) . , ; | ,u u u x t P t t r x t  = =    + . 

  If 0r = , then the pair puts into correspondence to ( ),x t  the control in the point ( ),x t : 

( ) ( ). ,u u x t= . 

We will use the concepts of Euler’s broken line and motion [3]. 

  In supplement and [1,4] there are the notions of the moments of the information receipt for 

the Euler’s broken lines and motions, which are born by r – strategies. In the case
0

0U = , the 

strategies
0u ,

0v  were found in [1]. It forms the equilibrium situation. It gives birth to the 

equilibrium trajectory ( )
0

tx .  The number of the moments of information receipt for the 

motion ( )
0

tx is not more than the countable number. 

Definition: 

The pair of r-strategies 
0 0
,u v forms the equilibrium situation in the game (1)-(4) if 

1) the controls 
0 0
,u v bear the unique solution of the problem (1)-(2) which is the unique 

motion, that is for all t  the next correlation takes place 

( )
0 0 0 0

[ , , , ] { , }X t t Tx u v x  =   , 

2) the equalities are fulfilled  

( )
( )

( )( )
0 0

0 0

1 1
[ , , ]

, max
X t t

x T

x v

gu vI = , 
0

[ , ]t Tt , 

( )
( )

( )( )
0 0

0 0

2 2
[ , , ]

, max
X t t

x T

x u

gu vI = ,
0

[ , ]t Tt . 

 

 Let consider the case
0

0U =   that is the game without the additional payment in detail. 
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Let choose some piece - constant ( )
0

tu , ( )
0

tv ,
0
,t Tt     and corresponding to them 

trajectory ( ) ( ) ( )( )0 0 0

1 2
,t t tx x x= .  

Let designate 

 ( )( ) ( )( ) 0

1 1 1
, |x t x T Tg g xM =  , ( )( ) ( )( ) 0

2 2 2
, |x t x T Tg g xM =  . 

1G  is the maximum v - stable bridge [3] to  the set 
1M ,

1G  is it’s boundary. 

2G  is the maximum u - stable bridge [3] to  the set 
2M ,

2G is it’s boundary. 

ext
u  is the strategy which is extreme to the bridge 

2G . 

 Let explain that the bridge 
uG  to the set M  is the set 

uG which has the next 

properties. 

1. Bridge 
uG  contains the initial position

* *
{ , }x t . 

2. Bridge 
uG finishes in the terminal set M . 

3. The strategy ( )ˆ ,u x t exists which keeps every motion ( )( )
* *

ˆ; , , ,x t u x tx t  under any 

choice of the initial point 
* *

{ , }
ux t G  on the bridge till the meeting with M . 

Notice that the second player cannot deviate from M using his controls v . 

Extreme strategy ( ),
ext

x tu  and u - stability of the bridge 
uG  are described in [3]. 

Lemma 15.1, [3], states. 

Let ( ),
ext

x tu  is the extreme strategy to the u -stable bridge 
uG and let ( )

* *
,

ux t G . 

Then for every motion ( ) ( )( )* *
; , , ,

ext
x t x t x tx t u=  up to the meeting ( )( ),x T T M  inclusion 

is realized ( ) ( )0
{ , }

u
x t t t TG t   . 

Let ( ) )
0

1 2 2 01
( \ ) ( \ )), ,(t t TGx G G G t   I . 

( )
0

, ,X x t u  
 

 is the set of motions which appear due to the control function 

( )
0

u  ,  ,t T   and  begin from the point ,x t . ( )( )0
; , ,x x t u  is the motion beginning from 

point ,x t  and appearing due to control ( )
0

u  . Control of the second player is not interesting 

for us. 
( )  

( )( ) ( )

( )( ) ( ) ( 

0 0

0

2 2 2 2

, { | , ,

; , , , , ,

: ; , , , , , }

T x t t t t T

x x t X x t

x x t t t T

u u

t u G t t

  

  

= 

  
 

    

 

( )
( )

0
.

, inf
t T x t

x t t


= , if ( ) 2
,x t G . ( )0

,x t t = , if ( ) 2
,x t G ,  

( ) ( )0
, ,

c
x t x t t = − .  

( ),
c

x t  is the minimal interval of time which is necessary  for the second player in 

order to reach the boundary 
2G  from point ( ),x t . 

 

The r - strategies 
0 0
,u v  form the equilibrium situation, 
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Where 

( ) ( ) ( )

( ) ( )

( ) 
( ) ( )

( ) ( )

( )

2

2

0

0

2

0

2

2

, , , , ;

, 0, , ;

| ,

, 0, , ;

, , , 0;

( , ), ,

c

ext

r x t x t x t

r x t x t

t t r

r x t x t

t x t r

x t x t

G

G

u
u

G

u G

u G

 

= 


= 


  +
= 

 


 =




. 

0

v  is defined similarly. 

The pair
0u ,

0v  gives birth to the equilibrium trajectory ( )
0

tx .  The number of the 

moments of information receipt for the motion ( )
0

tx is not more than the countable number. 

 

2. DIFFERENTIAL GAME WITH ADDITIONAL PAYMENT 

Let consider the case ( )( )0

0
0TU x  , ( )0 0u

Tx x= , that is the game with the additional 

payment. Let ( )( ) ( )( ) 0
0

2 02 2
, |U x t x T Tg g x UM =  + . 

( )2 0G U is the maximum u - stable bridge to the set 0

2

UM , ( )2 0G U  is it’s 

boundary. 

( )  

( )( ) ( )

( )( ) ( ) ( ) ( 

0

0 0

0

2 2 0 2 2

, ; { | , ,

; , , , , ,

: ; , , , , , }

T x t t t t T

x x t X x t

x x t t t T

U

u u

t u G U t t

  

  

= 

  
 

    

 

( )
( )

0
0

, ; 0

, inf
t T x t

U

U

x t t


= if ( ) ( )2 0
,x t G U ,   ( )0

, ;T x t U   . 

( )0
0

,U x t T = , if ( ) ( )2 0
,x t G U , ( )0

, ;T x t U = .  

( )0
0

,U x t t =  if ( ) ( )2 0
,x t G U . ( ) ( )0 0

0
, ,

c
U Ux t x t t = − . 

( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) 
( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0

2 0

2 0

00

0

2 0

0

2 0

2 0

, , ,

, ;

, 0, , ;

| ,

, 0, , ;

, , , 0;

( , ), ,

c

ext

Ur x t x t

x t

r x t x t

t t r

r x t x t

t x t r

x t x t

G U

G U

uu U

G U

u G U

u G U

 

 =

 


= 



  += 


 


 =




. 

The next theorem is proved as it was done in [1].  

Theorem1. The pair ( )0 0

0
,u U v  forms the equilibrium situation and gives birth to the 

equilibrium trajectory ( )
0

tx . 
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The number of the moments of information receipt for the motion ( )
0

tx  is finite 

number. 

Let ( )( ) ( )( )0 0

01 02
0T TU x U x  . The pair ( )0 0

01
,u U v  forms the equilibrium 

situation and gives birth to the equilibrium trajectory ( )
0

tx  as well as the pair ( )0 0

02
,u U v . 

Theorem2. Let the pair ( )0 0
01 ,Uu v gives birth to the motion ( )

0
tx . The amount of 

the moments of the information receipt by the player 1 about the motion ( )
0

tx  is not more 

than   the amount of the moments of information receipt for the motion ( )
0

tx  which is born 

by the pair ( )0 0

02
,u U v . 

  The theorems 1 and 2 are able to be used for the investigation of the game, in which 

disturbance is able to change the value of addition payment.  

 
Example. 
 

1
vx = , 

2
ux = , 0 1t  , 0 1u  , 0 1v  , ( )

1
0 0x = , ( )

2
0 0x = , 

( ) ( ) ( )
1 1 2

1
, 1 1

2
u v x xI = − , ( ) ( ) ( ) ( )( )

2 2 1

1
, 1 1

2
u v U x Tx xI = − + . 

  The first player is playeru , the second player is the player v . 

 At first let consider the case
0

0U =  that is the game without additional payment. 

The maximum u - stable bridge 
2G  to the set  ( ) ( )( ) 0

2 2
, | 1x T xg g x  is: 

( )
( ) ( )

( )( ) ( )( )0

2 2 2
, , , ,

, | 1 1maxmin
u x t X x t u x t

x t A xg gG x
  

  
=   
  

, that is 

( ) ( ) ( ) ( )( )0

2 2 1 2

1
, | 1

2
x t A t t gG x x x

 
=  −  
 

. 

Similarly 

( ) ( ) ( ) ( )( )0

1 1 2 1

1
, | 1

2
x t A t t gG x x x

 
=  −  
 

, where  

( ) ( ) ( ) 1 2
( , ) | 0 1 0 1 0 1A x t t x x=         . 

 Let ( )
0

1
t tx = , ( )

0

2
t tx = , ( )( )0

1

1
1

2
g x = , ( )( )0

2

1
1

2
g x = . 

( ) ( ) ( )

( )( )  )
0

2
, , , ,

1 1 1
1 , 0,1

2 2 2
maxmin

u x t X t t u x t

x t t t t

x

g
 
  

= − =   , 

( ) ( ) ( )

( )( )  )
0

1
, , , ,

1 1 1
1 , 0,1

2 2 2
maxmin

v x t X t t v x t

x t t t t

x

g
 
  

= − =   , 

 That is ( ) ( ) ( )0

2 2 1 1
\ \tx G G G G     when  )0,1t .  That is why the position 

strategies ( )
0

,x tu , ( )
0

,x tv  form the situation of equilibrium, 

( )
( ) ( )

( ) ( )

0

0 1 2

0

1 2

1, 2 1 2 1
,

0, 2 1 2 1

t t t
x t

t t t

x x
u

x x

  − = −
= 

 − = −

, 
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 ( )
( ) ( )

( ) ( )

0

1 2
0

0

1 2

1 1
1,

2 2
,

1 1
0,

2 2

t t

x t

t t

x x
v

x x


 +

= 
  +


, that is ( )
( )

( )

2
0

2

1 1
1,.

2 2
,

1 1
0,

2 2

t t

x t

t t

x
v

x


 +

= 
  +


. 

  Equilibrium strategies are 

( ) ( ) ( )

( ) ( )

( ) 
( ) ( )

( ) ( )

( )

2

2

0
0

2

0

2

2

1
, 1 , , ;

2

, 0, , ;

1| ,

, 0, , ;

1, , , 0;

( , ) 0, ,
ext

r x t x t x t

r x t x t

t t r

r x t x t

t x t r

x t x t

G

G

uu
G

u G

u G

 


= + − 


= 


 =   +

= 
  

 =  =

 = 

 

0

v  is constructed similarly. 

 The moments of reception information by the first player about ( )
0

tx  are: 

1 (0.5)
n

nt = − , 0,1,...n = , lim 1
nn

t
→

= , ( ) ( )1
lim lim 00.5

n

n nn n
t t −→ →
− = = . 

 Let consider the case
0

0U  .  The first player pays it   to the second player   

when ( ) ( )
0 0

1 2
1 1, 1 1x x= = . 

( ) ( ) ( ) ( ) ( )( )0

2 0 2 1 02

1
, | 1

2
x t A t t gG U x x x U

 
=  −  + 
 

, 

or ( ) ( ) ( ) 2 0 1 0
, | 2 1 2x t A t tG U x U=   − − . 

( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) 
( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0

2 0

2 0

0
0

0

2 0

0

2 0

2 0

1
, 1 2 ,

2

, ;

, 0, , ;

1| ,

, 0, , ;

1, , , 0;

( , ) 0, ,
ext

r x t x t

x t

r x t x t

t t r

r x t x t

t x t r

x t x t

U

G U

G U

u U u

G U

u G U

u G U

 


= + + −





= 


=  =   +

  

 =  =

 = 

 

 
 The moments of the information receipt for 

( )
0

tx are ( ) ( )0
1 2 1 0.5

n

nt U
 

= + − 
 

( )0
0,1,...,n m U= . If

0

1

2046
U = , then

10
1t = , 

( )0

1
10

2046
m mU

 
= = 

 
. If

0

1 1

126 2046
U =  , then

6
1t = , ( )0

1
6

126
m mU

 
= = 

 
.  

Consideration of the example is finished.  
  In conclusion we’ll try to explain the results of the theorem 2 in the simplest way. So it 

is necessarily to do some designations and note some properties of the bridges. 

93



 

 

( )( ) ( ) ( )( )( )0 0

2 2 0
, , , 1,2

i
t t ix G x G U   =  is the distance between ( )

0
tx and the 

boundary ( )( )2 2 0
, 1,2

i
iG G U  = of the bridge ( )( )2 2 0

, 1,2
i

iG G U = . It depends on t . 

( )( ) ( )( )0 0

01 02
0T TU x U x  . In common case 20 10

2 2 2

U UM M M  . According 

to the properties of bridges ( ) ( )2 2 02 2 01G G U G U  . So 

( )( ) ( ) ( )( ) ( ) ( )( )0 0 0

2 2 02 2 01
, , ,t t tx G x G U x G U       .  

The inequalities are used in conclusion. 
 

CONCLUSION 
 

In the paper it is shown that even the least additional payment arranges the finite 

quantity of the information reception about equilibrium trajectory ( )
0

tx . If additional 

payment increases then the amount of information reception decreases. 

The frequency of reception of information about whether the second player deviated 

from ( )
0

tx  and reaches the boundary of the bridge depends on the distance between ( )
0

tx  

and the boundary. In common case ( )( )0

2
, 0

t T

tx G
→

 → . So, the amount of the moments of 

the reception of information for ( )
0

tx  is      countable. 

( ) ( )( ) ( ) ( )( )0 0

2 01 2 02 0
, , 0, ,t t t Tx G U x G U t         . So, the amount of the 

moments of the reception of information for ( )
0

tx  is     finite. If the distance is longer than 

the frequency is smaller. 

 It is known that in the game without additional payment [1, 2] ( )
0

tx  is born by 

equilibrium positional strategies. They demand the continuous reception of information. 
  
SUPPLEMENT 

In the supplement the definitions of the Euler’s broken line ( ) ( )( )*

*
; , , , .t t u vx x x t 

=  

and motion   ( ) ( )*

*
; , ,x t x t ux t= , which are born by r-strategy u  from position ( )*

*
,x t , are 

adduced. Definitions of the moments of reception information for the Euler’s broken line and 

motion which are born by r – strategy, are done. 

  Let the initial position ( )*

*
,x t  is done and r −  strategyu is chosen. Let cover 

*
,Tt   by the system of semi - intervals

1i i
t  +

  ,  0,1,...,i I n = ,
0 *

,
n

Tt = = . Let  

( ) ( )
*

,v t Q t t  is the measurable according to Lebesgue realization of the second player’s 

control ( ) ( ) 
*

. |v v t t Tt=   . Then the Euler’s broken line  ( ) ( )( )*

*
; , , , .t t u vx x x t 

=  is 

called absolutely continuous function which fits to the condition ( ) *

*x t x
=  and which is 

the solution of the differential equation 

( ) ( ) ( ) ( )( ) ( )( ), , , ,
i i

t f t t u v tx x x    
=                                                                ( )5  

under
1i i

t  +
  , if 

1
i I and 
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( ) ( ) ( )
0 0

, , , ; ,
i

t f t t u v t
j jx x x     

   =    
   

                                                      ( )6   

under
1i i

t  +
  , if 

2
i I .  

Here 
0 0

, ;
i

u
j jx   

  
  
  

 is meaning, which takes the function 

0 0

, ;u t
j jx  

  
  
  

under 
i

t =  (look the definition of  r −  strategy). 

The set of indices 
2I  is defined in the following way. 

If
2

i I , then 1) 0i  ; 2)
0

ij   such, that 
0

j  is not belongs to 
2I and 

0 0 0

,
i

r
j j jx   

  +   
  

 (for every  
2

i I  such 
0

j  is unique).  

The set of indices
1I  is

1 2
\II I= .  

Let make clear this definition. For example, let ( )*

1 0 0 2
,r x    +  . The function   

( )*

*
, ;u tx t is put into correspondence to the point ( ) ( )* *

* 0
, ,x t x = . Then the Euler’s broken 

line fits to the condition ( ) *

*x t x
= and is the solution of the equation ( )5 under 

0 1
t    

and the equation  ( )6  under 
1 2

t   , where ( )
0 0

*

* 1
, ; , ;

i
u u

j jx x t   

   =  
  

.  

If ( )*

1 0 0
,r x   + , then the Euler’s broken line is the solution of the equation 

( )5 under 
0 1

t   , 
1 2

t   . Further, the Euler’s broken line fits to the equation ( )6  

under )2 3
,t   , if ( )( )1 1 1 2

,r x   
+  . It fits to the equation ( )5 on the contrary case. 

 

Definition: 

  The moment of time
j ,

1
j I , 0j  , is called the moment of reception of 

information for  the Euler’s broken line. 

The motion ( ) ( )*

*
; , ,x t x t ux t= , which is born by the strategy  u  from the position 

( )*

*
,x t , is  called the every absolutely  continuous function  ( )x t , for which the sequence of 

the Euler’s broken line 
( )

( )( ); , , , .
k k k k

t ux x t v
is found. The sequence evenly converges to 

( )x t  on 
*

t Tt    under condition ( )1
limsup 0

k k

i ik i
 +→

− = . 

 Let remind that the distance between the trajectories ( )
k

tx
and ( )x t  is estimated by the 

equality  

( )
( ) ( )

( )( ) ( ) *
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The existence of motions which are born by r -strategy is proved in the same way as the 

existence of motions which are born by positional strategy is proved. 

Definition:  

Let the sequence of the Euler’s broken lines ( )
k

tx
 converges to the motion ( )x t .  Let 

for the sequence of the Euler’s broken lines the sequence of the moments of the reception of 

information exists, which converges to some moment t . Then the moment t  is called the 

moment of reception of information for the motion ( )x t  or the moment of reception of 

information simply.  

 By another words, if
1

,
k k

i
i I  , 0i  , lim

k

ik
t

→
= , then t  is the moment of reception of 

information for the motion ( )x t . Here 
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\
k k k

I I I= is the subset of indices, which 

corresponds to the Euler’s broken line
( )k

x
. 
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Abstract: The subject of the paper is the presentation of the concept of an active document to
support the education of technical subjects. The concept is based on extending the capabilities
of the Jupyter Notebook platform with the use of external software, such as simulators, graphic
editors and component databases for the presentation and solution of problems. The paper outlines
examples of possible use in the process of education these subjects: the basics of electronics,
theoretical electrical engineering and circuit design.

Keywords: jupyter notebook, simulations, python, education, electronic circuits

Introduction

The current state of multimedia resources utilization in classical education approach is focused
mainly on the passive form of presentations in text form, supplemented by graphic elements,
graphs, animations or videos. In the case of distance learning, this form is usually supplemented
by a presentation of the lecturer in real time with a suitable form of mutual communication. The
active form of the student’s work is usually practice and solving tasks related to the material, which
is supplemented by consultation with the teacher.

This classic method of education has limited technological possibilities. For this reason, it does not
fully support creative and critical thinking, active research and experimentation with the presented
topic. This has limited possibilities for the student to modify the presented problems, their starting
points, parameters and the consequences of their changes. With the growing need to increase the
quality of education with the support of self-study as well as distance learning, it is necessary to
extend and re-evaluate the existing view of a simple presentation form of study materials. Advances
in the development of computer tools enables the implementation of new approaches to education
with the possibility of active student involvement in the subject matter, generally included under
the active learning paradigm. A number of platforms are currently available for teacher interaction
with students, such as Moodle, Chamilo, edX, Edmondo and others. These are primarily intended
for communication in the form of video, chat and sharing of study materials.

For active study with the possibility of interaction with the study material, it is necessary to choose
the form of active documents for that materials. In the field of creation, presentation and distribution
of such documents, especially in the field of support for education subjects related to information
technologies, the Jupyter Notebook platform [1] and projects derived from it for the creation of
electronic publications [4] are widely used. The subject of this paper is the presentation of the
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concept of extending this platform to the education of technical subjects - theoretical electrical en-
gineering, design and simulation of electronic circuits, signal processing, which require the support
of external software.

From the teacher point of view who is working in the field of teaching the electrical engineering,
electronics and related subjects, which requires an active approach of the student to the presented
topic, the concept of interactive documents should meet the following requirements:

• In the field of elementary teaching, visualization and practical verification of basic theoretical
knowledge:

– connection the mathematical description with the properties of the circuit,
– the possibility of active work with the topic by its modification,
– modification and addition the parameters (working with basic electrical circuits, re-

sponse of basic RC elements to different types of signals in the time and frequency
domain, etc.).

• In the field of electrical circuits analysis:

– practical verification of results the theoretical investigation of the problem (loop currents,
node voltages, admittance matrix, oriented graphs),

– practical verification of results the analysis and design of the circuit with specific
parameters and properties,

– the possibility of investigation the properties in the domain not covered by the analysis
(influence of real properties of components, extension by parasitic elements, etc.).

• In the field of synthesis and advanced circuit design:

– connection the design methods with the knowledge obtained during the programming
courses,

– practical use of numerical algorithms in technical practice (circuits optimization for
given parameters, analysis of component values variations for required properties, min-
imization of power losses, etc.).

• In the field of interface design, measurement and experiment control:

– simulation the designed circuits properties using specific models of components (stabil-
ity, noise properties, dynamic response, power parameters, etc.),

– the possibility of realization the virtual experiments by simulation using mathematically
synthesized signals as well as with signals obtained by measurements from the real
world,

– the possibility of proposed solutions optimization before their practical verification.

For students the use of this concept can be extremely attractive for analysis, signal processing
and design of circuit solutions in areas where access to real ”sources” of signals is technolog-
ically limited or impossible (biology, biophysics, medicine, nuclear technology, high voltage
systems, transport, etc.)
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In this contribution the possibility of extending the capabilities of Jupyter-Notebook platform by
using a classic simulator of electronic circuits as an active part of study materials are discussed.
The use of this concept on examples from the education of electronics is presented. Of course, this
concept can be extended and implemented in the process of education in other areas of technical
sciences, which require specific support for software that is not included in the Jupyter-Notebook
infrastructure.

1 Jupyter Notebook

1.1 Properties

Over time, the Jupyter Notebook [1] platform has evolved from an interactive interpreter of the
Python programming language into a large ecosystem for creating interactive platform-independent
documents that use a web browser for presentation.

Figure 1: Jupyter Notebook in web browser

The possibilities of using this platform for teaching from the point of view of the teacher as well
as the student are described in detail together with the case studies in [2]. The primary areas for
the Notebook application are that, which overlap with information technology. Jupyter Notebook
technology supports all the attributes of a standard web page, support for embedding executable
codes in dozens of programming languages, rendering mathematical formulas and generating
graphs. It is an ideal tool for creating textbooks and lecture notes in the area of programming,
database systems, numerical mathematics, visualization and data processing. A number of examples
are given e.g. in [3]. From a practical point of view the following points are important:

• The whole ecosystem is open-source, without restrictions and license fees, with the possibility
of extensions and modifications.
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• Creating and working with notebooks is platform independent in a web browser environment.
The creation uses a simple markdown language with support for creating mathematical
expressions using standard LaTeX syntax.

• Several notebooks distribution models are supported:

– for a large number (> 100) of users via the JupyterHub server application [5],

– for a smaller number (< 100) of users using the Littlest JupyterHub [6],

– or individual use via a local multiplatform jupyter server emulation application,

– for distribution of notebooks as passive web pages using the nbviewer [7] application or
for conversion notebooks to an electronic book using JupyterBook [4] application with
the possibility of exporting them to the classic paper form of the book or lecture notes.

1.2 Jupyter-Notebook expansion possibilities

The standard use of the Jupyter Notebook application does not require any intervention to the
standard configuration of the student’s computer. In the simplest case, just using a standard web
browser is enough. A more complicated situation occurs when it is necessary to use a software
within the notebook that is not a standard part of its ecosystem. The classic SPICE simulator
was used in the presented concept. The possibilities of using computational programs for FDTD
simulations of electromagnetic fields (MEEP [8]), interactive solution of problems using finite
elements (gmsh, ElemerFEM [9]) including the use of access to remote systems were also tested.

Figure 2: Jupyter Notebook with external lepton-schematic editor with circuit diagram

A typical configuration of a notebook page in the presented concept for solving electrical problems
consists of the following parts:
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• Theoretical part with a description of the problem, technically using the possibilities of
notebooks (texts, pictures, mathematical relations, scripts for calculations, drawing graphs,
tabulation of relations ...)

• Description of the circuit that is the subject of the problem. The input data containing the
circuit description are entered into the ngspice [11] in a text file form in the SPICE format
[10], which can be quite extensive and confusing for more complicated circuits. From a
pedagogical point of view, it is more appropriate to use the classical graphical representation
of the circuit in the form of its circuit diagram. Since there is currently no suitable graphical
editor implemented directly in the notebook environment, in cases where there is the need
to modify the circuit diagram, an external editor is used, which is called from the notebook
environment (lepton-schematic [12]), Fig. 2.

• Simulation and presentation of results. In the presented concept of an interactive notebook
with a demonstration of the properties of the electronic circuit, an external simulation engine
ngspice was used and the results are processed and displayed in graphical form with the help
of standard Python libraries (pandas, matplotlib).

The notebook extension infrastructure is shown in the following figure. Communication with the
notebook extension is performed by means of the gSim interface, the description of which is the
subject of the following section. The ngspice simulator itself is a standard program run in batch
mode.

Figure 3: The extended Jupyter Notebook configuration

Before the actual simulation process it is necessary to connect the description of the circuit with
internal databases and to add the models of the components from the local database. In the case of
the block circuit simulation, e.g. differential equations using XSPICE components (part of ngspice),
it is necessary to generate a specific model for each component with the current parameters spec-
ified in the circuit diagram. The result of the simulation is a binary or text file with voltages and
currents values for the selected circuit nodes. These results need to be further converted into a data
structures that can be visualized backwards in the notebook. A modified version of the gSim scripts
was used to simplify the whole process of data preparation, simulation control and conversion of
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results into data structures [13]. All these activities are implemented by software without the need
for interaction with the user.

1.3 gSim library structure

The gSim scripts library is created in the Python programming language and forms a communication
interface between the Notebook environment and external programs, the circuit editor, the netlist
generator and simulator itself. It contains a set of simple methods for input data processing,
simulation control and components parameter changing directly from the notebook environment.

1.3.1 Processing and editing of input data

The input data loading from the circuit diagram graphical editor is done by the gSim class con-
structor. At the same time a data consistency check is performed during loading (unconnected
component pins, duplicate or unspecified component references, etc.). The circuit netlist conver-
sion according to the SPICE format is done by the netlist() method.

from gsim import * # library import
g = gSim(’./examples/test_1.sch’) # read and check schematics
nst = g.netlist() # create netlist
print(nst) # print netlist

It is appropriate to demonstrate the creation of a netlist by entering it manually for pedagogical rea-
sons in order to understand the principle of the simulation process and possible circuit consistency
checking.

netlist=’* Komentar \n’ +\ # netlist as test string
’R1 1 2 1k \n’ +\ # in SPICE format
’C1 2 0 1uF \n’ +\
’V1 1 0 dc 0 ac 1 \n’ +\
’.AC DEC 100 10Hz 1MEG \n’ +\
’.END \n’

fp = open(’test_2.net’, ’w’) # write to file
fp.write(netlist)
fp.close()

g = gSim() # create simulator object
g.netlist(’test_2.net’) # read netlist from file

1.3.2 Simulation control

The created netlist can be edited and modified, the components can be added and updated, the
parameter values can be changed and the simulation parameters can be set without the need to
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interfere with the original circuit graphical input. Some of the methods for circuit modification and
simulation control are listed below:

• setDC() setting DC simulation parameters

• setAC() setting AC simulation parameters

• setTRAN() setting TRANSIENT simulation parameters

• setPAR() setting the value of the circuit parameter

• setOPT() setting or changing a simulation parameter

• setMODEL() component model declaration

• setCOMP() adding the SPICE component to the circuit

• getNET() return the current form of the netlist

• sim() run simulation

The type and parameters of the simulation can be entered directly in the graphics editor or by a
command before starting the simulation. The simulation result is written by the simulator to a
binary or text file. Then it is transferred to a dictionary containing as a key a variable name and
its associated data. The independent variable (voltage, time, frequency) is stored in the variable
xData, the dependent variables (values of currents, voltages in the circuit nodes) are in the yData
dictionary, while the name of the variable is the key of the dictionary.

g = gSim(’test_3.sch’)
g.netlist()
g.setTRAN(1e-5, 3, uic=’UIC’ )
g.sim()
[q for q in g.yData] # list of output values

The last script command displays a list of available variables from the circuit simulation, voltages,
and currents in the circuit nodes as dictionary keys. Depending on the type of simulation, the output
is real or complex values.

[’v(2)’, ’v(3)’, ’v(1)’, ’v(out1)’, ’i(v1)’]

The result of the simulation can be further processed using standard Python libraries for data pro-
cessing and visualization (numpy, scipy, pandas, maptplotlib ...).

import pandas as pd
import matplotlib.pylab as plt

d = pd.DataFrame(g.yData) # create pandas data object
d.index = g.xData # from simulation result

plt.plot(d.index, d.xData[’v(1)’]) # create graph
plt.show()
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2 Examples of use

The following section presents examples taken from selected areas of electronics and supplemented
by comments with emphasis on the presentation of the properties of the described concept.

2.1 Basic electronics

Problem: Based on the (previous) theoretical analysis of the bandpass RC filter (according to
the following figure), display the transmission characteristics of the circuit for the values of the
parameter R in the range of 5 to 12 kΩ. Calculate the circuit properties in case the component
values can be within a tolerance band of 5%. Compare the results with the previous solution for
ideal component values.

This example presents the use of parametric simulation of electronic circuits. The component values
are given by the R, C, parameters which are substituted by specific values before the simulation
itself.

Figure 4: Parametric simulation of electronic circuits

The preparation of the simulation consists of loading a graphical representation of the bandpass
filter created by the graphical editor and subsequent conversion to a text description of the circuit.

from gsim import * # library import
g = gSim(’./examples/notch.sch’) # read and convert schematics
nst = g.netlist() # create netlist
print(nst) # print netlist

The script output is a text description of the circuit, a netlist in SPICE format, generated by a script
from a circuit diagram. It is possible to compare the description of the circuit with its graphical
representation.

R3 0 1 {(1-w)*R}
R2 3 0 {w*R}
C2 3 1 {C}
C1 2 3 {C}
V1 2 0 dc 0 ac 1
R1 2 OUT1 {6*R}
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C4 OUT1 1 {C}
.end

The components parameter values can be set using the setPAR() method. The values can be
entered in numeric or text form in compliance with SPICE format. Also the type of simulation and
frequency range can be defined parametrically. Parameter values and the simulation process can
be modified programmatically. he results of the AC simulation are values in a complex form. The
circuit frequency response is displayed using standard matplotlib library.

g.setPAR(’C’, ’0.1uF’) # text form of the parameter
g.setPAR(’w’, 0.055) # numerical form of the parameter

# typa and range of simulation
g.setAC(10, 1000, number=10000, stype=’DEC’ )
for r in linspace(5e3, 12e3, 6):

g.setPAR(’R’, r) # parameter setting
g.sim()
plt.semilogy(g.xData, np.abs(g.yData[’v(out1)’]), label=str(r/1e3)+’k’ )

... # creating graph, grid, legend ...
plt.show()

The output of the script are values from which a graph is generated with a set of magnitude frequency
response characteristics of the circuit for a given range of parameters. The student can adjust the
graph to a standard form with a decibel scale.

Figure 5: Results of parametric simulation from the first part of the problem

To solve the second part of the problem, it is necessary to introduce parameters for individual
components and display the tolerance bands of characteristics by varying the values in the specified
range.

2.2 Theoretical electronics

Problem: Create and verify a model of a system of differential equations describing a harmonic
oscillator. Create and verify the system model with operational amplifiers without using the multi-
plication operation.
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When presenting the fundamental properties of electronic circuits, it is appropriate to avoid from
technical details and use the general terms to describe the problem.

A typical example is a harmonic oscillator which is described by a second-order differential equation:

d2s

dt2
+ ω2 s = 0

Using substitutions

y1 = s
dy2
dt

= ω y1

arrange the equation

d

dt

dy1
dt

= −ω2 y1 ⇒ d

dt

dy1
dt

= −ω
d

dt
y2

and we obtain a system of two first-order differential equations

dy2
dt

= ω y1
dy1
dt

= −ω y2

for simulation in integral form

y2(t) = ω

∫
y1(t)dt y1(t) = −ω

∫
y2(t)dt

The system of integral equations can be displayed directly using blocks in the simulation diagram
using functional blocks from the XSPICE extension which is part of the ngspice simulator. In circuit
diagram with XSPICE blocks the work with them is as with standard electronic components and it
is also possible to combine them freely.

Figure 6: Simulation of a system of differential equations

In block diagram the voltage source determines the generated frequency. The initial condition of
the integrator A5 determines the amplitude of the oscillations. The parameter ω sets the oscillator
frequency, for the ω = 2π value the oscillator frequency will be 1Hz. The script contains the
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setting of the simulation type (TRANSIENT) using the initial conditions (UIC) and the setting of
the parameter determining the frequency.

g = gSim(’./examples/generator.sch’)
n = g.netlist()
g.setTRAN(1e-5, 3, uic=’UIC’ )
g.setPAR(’omega’, 2*pi)
g.sim()

plt.plot(g.xData, g.yData[’v(y2)’], label=str(’Y2’))
plt.plot(g.xData, g.yData[’v(y1)’], label=str(’Y1’))
plt.legend()
plt.grid()
plt.show()

The simulation output are waveforms on the circuit Y 1 and Y 2 ports with mutual phase shift which
results from the theoretical description of the problem.

Figure 7: Time response at the output of signal generator

One of the possible solutions of the second part of the problem is the circuit according to the
following figure:

2.3 Electronic circuit design

Problem: Design the protection circuits of the ST32L432 microcontroller port which counts the
number of mechanical contact closures. When verifying the circuit properties use the voltage
waveform obtained by measuring on a real mechanical contact. For simulation purposes refer to
the manufacturer’s technical documentation for the microcontroller port circuit diagram.

Unlike of simulators with non-public source code or commercial products, ngspice allows to create
own components for XSPICE extensions and incorporate them into the simulation. For the fol-
lowing example, with a demonstration of the design of the microntroller port protection circuit, a
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Figure 8: Simulation of a system of differential equations using electronic components

component was programmed that allows the simulation of the time response of the real switching
event on the contacts of a mechanical relay obtained by measuring with an oscilloscope. A simple
measurement circuit for measuring the voltage at the relay contact is shown in Figure 9.

Figure 9: Measurement of electrical properties of mechanical relay contact

Due to inertia and mechanical resonance, the contact generates a delayed series of short pulses that
can negatively affect the operation of the device that evaluates them. The waveform measured by
the oscilloscope was saved in a data file in the text format (CSV) which will be read as the input
data to the simulation.
The object of the problem is to design protection circuits for the safe connection of a relay mechani-
cal contact to the microcontroller port and to prevent false evaluation of impulses caused by contact
oscillations. The microcontroller input port is a separately programmable peripheral enabling direct
connection of digital circuits as well as analog peripherals. A simplified microcontroller port circuit
diagram is shown in Fig. 11 taken from the manufacturer’s documentation. The circuit includes
port protection diodes, auxiliary resistors for port operation in PULL-UP and PULL-DOWN mode,
input-output circuits for digital circuits and a multiplexer for internal analog peripherals connec-
tion. The example is focused on the basic properties of the circuit, more complicated cases for the
connection of peripherals by long lines with parasitic inductances, capacitances and interference is
the subject of further examples.

The circuit connection including only the essential parts for the digital input circuits is shown in
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Figure 10: Relay contact switching, VB - yellow line, VZ - blue line

Figure 11: STM32L432 microcontroller port circuit

Fig. 12. The file name containing the input data is an input attribute of the component A1. The
A2 component is a model of the comparator which is part of a port with parameters taken from the
technical documentation of the microcontroller.

Figure 12: Input circuits

During the simulation, it is possible to change the circuit elements, define component models and
monitor the response of the circuit to changes.
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g = gSim(’./examples/port_01.sch’)
g.netlist()

g.setPAR(’R’, ’5k’)
g.setPAR(’C’, ’10nF’)
g.setTRAN(1e-6, 6e-3, 1e-3)

MODEL_1N4007 = ’IS=7.02767e-09 RS=0.0341512 N=1.80803 EG=1.05743 ’ + \
’XTI=5 BV=1000 IBV=5e-08 CJO=1e-11 ’+ \
’VJ=0.7 M=0.5 FC=0.5 TT=1e-07 ’+ \
’KF=0 AF=1’

g.setMODEL(’DMODEL’, ’D ’ + MODEL_1N4007 )
g.sim()

Figure 13: Simulation input data, real signal measured by oscilloscope

Figure 14: The simulation results, voltages at the comparator A2 input and output
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Conclusion

The presented concept demonstrates the possibilities of creating active documents to support the
student’s independent work within self-study or distance learning. In the process of education this
concept allows to concentrate within Jupyter-Notebook all the prerequisites needed to present the
topic without disruptive browsing between different programs and environments. The advantage
of this concept is that it is based exclusively on open-source software which allows its modification
and adjustment for specific use without any restrictions. The current version of the concept is
tested in a version for individual use with locally installed software. It is possible to modify it
using current technologies (Jupyter Hub, Docker) for use within a group of students with global or
individual problems assignment and with the extension of possibilities to actively test the topic by
solving the problems.
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Abstract: The inverse of a labeled graph with a non-singular adjacency ma-
trix is a labeled graph (uniquely determined by the original one up to isomor-
phism) with spectrum consisting precisely of the reciprocals of the eigenvalues
of the original graph. We survey a selection of results on inverses of labeled
trees, introduce briefly various approaches to ’inverting’ non-invertible ma-
trices, review a formula for a generalized inverse of a labeled tree, and outline
main ideas furnishing a new proof of this formula.
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INTRODUCTION

A considerable part of research into spectra of graphs is motivated by
application in chemistry. For example, the smallest positive and the largest
negative eigenvalue of a graph representing a molecule play an important
role in quantum chemistry by determining the minimal binding energy of the
molecule. In somewhat more detail, energy of the highest occupied molecular
orbital (HOMO) and of the lowest unoccupied molecular orbital (LUMO) of
the molecule correspond, respectively, to the smallest positive and the largest
negative eigenvalue of the graph; their difference is the well known HOMO-
LUMO separation gap.

Lower bounds on the smallest positive eigenvalue of a graph are available
but they are not as abundant as the upper bounds on the spectral radius.
If, however, one could ‘invert’ a graph in the sense of inverting entries in
its spectrum, then any upper bound on the largest eigenvalue of an ‘inverse’
graph would automatically be a lower bound for the smallest positive eigen-
value of the original graph. This is one of the main application motivation
for the study of ‘inverses’ of graphs, some of which we now briefly review.
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A straightforward way of thinking of an inverse of a (multi-)graph would
be to invert its adjacency matrix in the case it is non-singular. It turns
out, however [5], that in such a case the inverted matrix has non-negative
integral entries if and only if the graph is a union of isolated edges. Another
approach could consist in considering an inverse of a graph to be any graph
the spectrum of which is obtained by inverting every non-zero eigenvalue
(including multiplicities) of the original graph. Since every symmetric matrix
is diagonalizable, the above is equivalent to defining a graph H to be an
inverse of a graph G if the adjacency matrix AH of H is similar to the
inverse of the adjacency matrix AG of G. As entries of AG are non-negative
integers, such a definition would imply that det(AG) = ±1 and hence if H
is in this sense an inverse of G, entries of AH would be integral. Such a
way of proceeding proved fruitful in a number of ways [4] but suffers from
the aesthetical drawback that inverses, if they exist, would not be unique
in general. A way out is to restrict similarity to signability and declare a
graph H to be an inverse of G if AH = DA−1G D for some diagonal ±1 matrix
D. This was first suggested in [4] and later elaborated in [6]; this setting
also implies the desirable relation (G−1)−1 = G if the inverse exists. For
more information about the history of investigation of graph inverses we also
recommend [6].

The main problem with existence of inverse in any of the above sense is
the fact that for ‘most’ (multi-)graphs with no zero eigenvalue the inverse of
their adjacency matrix is not signable (or, even more generally, not similar)
to a matrix with non-negative entries. Most of the research in [4, 6] therefore
focused on sufficient conditions for a graph G with no zero eigenvalue to have
A−1G similar or signable to a non-negative matrix. To arrive at a reasonably
large set of ‘invertible graphs’ it makes sense to consider labelled graphs. As
edge multiplicity can be expressed by means of an appropriate label, from
now on we will consider simple graphs, that is, having neither multiple edges
nor loops.

Let G be a simple graph with edge set EG and let K be a (not necessarily
commutative) ring. A labeling α : EG → K is an arbitrary function assigning
to every edge e ∈ EG a non-zero label α(e) ∈ K. The pair (G,α) is a
labeled graph; the ring K does not appear in the notation and will always
be understood from the context. As usual, an adjacency matrix A(G,α) is
a square matrix with rows and columns indexed by the vertex set of G, in
which the uv-th element auv is equal to zero if u and v are not adjacent in
G, and auv = α(e) 6= 0 if u and v are joined by the edge e.
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If A(G,α) is non-singular, we define an inverse of a labeled graph (G,α) to
be a labeled graph (H, β) with labels in the same ring K and with adjacency
matrix A(H,β) = A−1(G,α).

In this context, however, one may ask what can be done in the case of
labeled graphs with a singular adjacency matrix. A most straightforward
approach is to invoke one of the (many) generalizations of matrix ‘inverses’,
such as the ones due to Moore-Penrose or Drazin (a special case of the latter
being known as the group inverse). A basic question that arises then is
whether or not a ‘generalized inverse’ of a graph can be derived solely from
the structure of the graph.

The purpose of this short survey is to review fundamental facts about
‘classical’ graphs, with focus on inverses of trees with a non-singular adja-
cency matrix, and to address the questions stated above for ‘generalized’
inverses of trees, allowing also those with singular adjacency matrix.

1 Inverses of labeled graphs

It is well known that an adjacency matrix of a tree is invertible if and only
if the tree contains a perfect matching (which is then necessarily unique).
It therefore makes sense to consider a wider class of bipartite graphs with
a unique perfect matching and look for properties which would enable for
a description of inverses based just on the structure of the graph, without
actually inverting its adjacency matrix.

Thus, let (G,α) be a labeled graph, with edge labels in a (not necessarily
commutative) ring K, such that G is bipartite and has a unique perfect
matching. Since G is bipartite, the adjacency matrix A(G,α) may be assumed
to have the block form

A(G,α) =

(
0 A
AT 0

)
; (1)

here A is usually called a bipartition matrix of (G,α). By [4, Lemma 2.1] we
know that a simple bipartite graph G as above has a unique perfect matching
if and only if its vertex set VG admits a bipartition such that vertices in both
parts can be linearly ordered in such a way that the above bipartition matrix
A is triangular; we will assume this from now on. Then, the matrices A and
A(G,α) are invertible if and only if all diagonal entries of A have multiplicative
inverses in K.
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If a bipartite graph G with a unique perfect matching M has 2n vertices
and its bipartition matrix A is upper triangular, then we may (and we will)
without loss of generality assume that the bipartition of VG has the form
{1, 2, . . . , n} and {1′, 2′, . . . , n′}, with ii′ being the edges of M and with no
edge in G of the form ij′ for i > j, where i, j ∈ {1, 2, . . . , n}. We will briefly
refer to this situation by saying that both G and A are in an upper canon-
ical form. A lower canonical form of G and A is defined analogously. The
matched and unmatched edges of G will occasionally be called horizontal and
descending, respectively, as they can be drawn as horizontal and descending
segments (from left to right) when the non-dashed and dashed vertices are
drawn in two columns next to each other in an obvious way. We will use this
notation and terminology throughout from this point on. Note that if (H, β)
is the inverse of our labeled graph (G,α) with G in an upper canonical form,
then H is automatically represented in a lower canonical form.

By an u→v path P in G we understand a sequence u0u1 . . . u` of mutually
distinct vertices of G with u0 = u, u` = v, and uk−1uk ∈ EG for every k ∈
{1, . . . , `}. Such a path P will be called M -alternating, or simply alternating,
if ` is odd and uk−1uk ∈ M if and only if k is odd, 1 ≤ k ≤ `. We will say
that an alternating path P is even (odd) if it contains and even (odd) number
of edges not in M . Thus, if P consists of a single edge e ∈ M , then P is
even. Letting αk = α(uk−1uk) and recalling that labels of edges of M are
assumed to have multiplicative inverses in K, for an alternating u0→u` path
P in (G,α) as above we define the value ωα(P ) of P to be

ωα(P ) = α−11 α2α
−1
3 α4 . . . α

−1
`−2α`−1α

−1
` . (2)

That is, to obtain the value ωα(P ) we multiply through the inverses of labels
of matched edges and the original labels of unmatched edges in the order
the path is traversed. Finally, for a pair of distinct vertices u, v of G we let
p+M(u, v) and p−M(u, v) be the sum of the values ωα(P ) of all even and odd
alternating u→v paths P , respectively. Note that the values of p+M(u, v) and
p−M(u, v) are automatically zero if both u, v ∈ {1, 2, . . . , n} or both u, v ∈
{1′, 2′, . . . , n′}. Observe also that, for i ≤ j, alternating i′→j paths in our
graph G will always have the form i′ir′rs′s . . . t′tj′j for some (possibly empty,
if i = j) set of vertices r, s, . . . , t such that i < r < s < . . . < t < j.

Generalizing the ideas contained in the (unpublished) PhD dissertation
of the author [8] we prove that the labeled graphs considered above auto-
matically have inverses, following the original outline given in [8].
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Theorem 1 [9] Let G be a simple bipartite graph of order 2n in am upper
canonical form with a unique perfect matching M and let α : EG → K be
a labeling in a (not necessarily commutative) ring K such that the label of
every edge in M has a multiplicative inverse in K. Then, the labeled graph
(G,α) has an inverse (H, β) whose lower canonical form on the vertex set
VH = VG is given by letting two distinct vertices i′ ∈ {1′, 2′, . . . , n′} and
j ∈ {1, 2, . . . , n}, i ≤ j, be adjacent in H if and only if p+M(i′, j) 6= p−M(i′, j),
and by defining β(i′j) = p+M(i′, j)− p−M(i′, j) for i′j ∈ EH .

Let (H, β) be the inverse of (G,α) as in Theorem 1. The graphs G and H
have the same vertex set but their edge sets have just the edges of the unique
perfect matching M in common because of an upper and a lower canonical
form of G and H, respectively. We now show that (at least part of) G can
be embedded in H. Let G′ be the subgraph of G on the same vertex set
VG′ = VG with the edge set EG′ = {i′j; ij′ ∈ EG; β(i′j) 6= 0}. We make
G′ into a labeled graph (G′, α′) by letting α′(i′j) = β(i′j) and we will call
(G′, α′) the derived graph of (G,α). Note that G′ is isomorphic to a subgraph
of G via the bijection interchanging i with i′, 1 ≤ i ≤ n. The derived graph
(G′, α′) is a labeled subgraph of the inverse (H, β) of (G,α) in the sense that
G′ is a subgraph of H and the labelings α′ and β coincide on edges of G′.
Observe also that all edges e ∈ M appear in both G′ and H, with labels
α′(e) = β(e) = α(e)−1. We sum up these facts as follows.

Theorem 2 [9] Let G be a simple bipartite graph with a unique perfect
matching and with a labeling in a ring K assigning to every matched edge
an invertible label, and let (G,α) be a labeled graph in an upper canonical
form. Then, the derived graph (G′, α′) is a labeled subgraph of the inverse of
(G,α).

Suppose, for example, that the underlying graph G of our labeled graph
(G,α) considered above is a tree T . For every unmatched edge ij′ ∈ ET
(i < j) we then have a unique (and, as it happens, odd) alternating i′→j path
P = i′ij′j and so p+M(i′, j)−p−M(i′, j) = −ωα(P ) = −α(ii′)−1α(ij′)α(jj′)−1 6=
0. It follows that i′j is an edge of the derived graph (T ′, α′), so that T ′ can
be identified with T , and α′(i′j) = −α(ii′)−1α(ij′)α(jj′)−1. Of course, for
every matched edge ii′ of T = T ′ we have α′(ii′) = α(ii′)−1 = a−1ii′ . Lemma
2 then shows that the inverse of a labeled tree can be considered to be a
super-graph of the tree. We state these observations for a later use.
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Theorem 3 [9] Let T be a tree of order 2n with a unique perfect matching
and let (T, α) be a labeled graph, given in an upper canonical form. The
derived graph (T ′, α′) has T ′ isomorphic to T , with α′(ii′) = α(ii′)−1 for every
matched edge and α′(i′j) = −α(ii′)−1α(ij′)α(jj′)−1 for every unmatched edge
(i < j) of T . Moreover, (T ′, α′) is a labeled subgraph of the inverse of (T, α).

2 Generalized inverses of trees

As alluded to in the Introduction, it is natural to ask what one can do in
the case of labeled graphs with a singular adjacency matrix. An equally
natural move is to consider ‘inverting’ the matrix by taking one of the gen-
eralizations of matrix inverses, such as the Moore-Penrose inverse, or the
Drazin inverse, or a special case of the latter known as the group inverse.
In the instance of a (square) symmetric matrix A all these inverses coin-
cide and are commonly called a pseudo-inverse of A, which we will denote
by A∗ throughout. The pseudo-inverse of a symmetric matrix is easy to
introduce as follows. Since a real symmetric n × n matrix A is orthogo-
nally diagonalizable, there is an orthogonal matrix P such that PAP T = D,
where D = diag(λ1, . . . , λk, 0, . . . , 0) is the diagonal matrix of eigenvalues
of A, with k = rank(A) non-zero eigenvalues λ1, . . . , λk. Letting D∗ =
diag(λ−11 , . . . , λ−1k , 0, . . . , 0), the pseudo-inverse A∗ of A is simply given by
A∗ = PD∗P T , that is, both A and A∗ are conjugate to their corresponding
diagonal matrices by the same orthogonal matrix P . Note that A∗ is again
symmetric, and A∗ coincides with A−1 if A is non-singular.

Motivated by this, we define the pseudo-inverse of a labeled graph (G, a)
with adjacency matrix A to be the labeled graph (G∗, a∗) with adjacency
matrix A∗, the pseudo-inverse of A. As before, G and G∗ are assumed to
have the same vertex set, and e = uv is an edge of G∗ if and only if the
uv-th entry of A∗ is non-zero, and then this entry is also the weight a∗(e)
of e. And, again, note that G∗ is well defined up to isomorphism preserving
edge weights.

Observe that this way of defining pseudo-inverses of labeled graphs is in
line with the original motivation of considering graph inverses which comes
from chemistry. Namely, there appear to be fewer methods for estimating
the smallest positive eigenvalue of a graph in contrast to a larger number of
techniques for bounding the largest positive eigenvalue. For graphs repre-
senting structure of molecules, however, the smallest positive eigenvalue is a
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meaningful parameter in quantum chemistry. If such a graph has an inverse,
one may hope to increase the number of techniques for estimating its smallest
positive eigenvalue by passing to bounds on the largest positive eigenvalue of
the inverse graph. This feature remains present also for our pseudo-inverses.

A formula for entries of the adjacency matrix of the pseudo-inverse of a
tree with arbitrary non-zero edge weights can be derived from a result of [3]
stated in terms of bipartite graphs associated with arbitrary matrices (with
the vertex set being the union of row and column indices of a matrix) in
the special case when the graphs are acyclic. The proof of the result of [3]
is based on a determinant formula for entries of the Moore-Penrose inverse
that first appeared in a classical paper [7]; for more recent references see [1]
or [2, Appendix A].

In [11] we gave a different proof of a formula for calculating the pseudo-
inverse of an arbitrary labeled tree. The proof in [11] does not refer to
the formulae for entries of the Moore-Penrose inverse and is based solely on
considering eigenvectors (without actual evaluation of any of them) regarded
as functions on the vertex set. In fact, some of our considerations are valid
for any real-valued function on the vertex set of a tree (not necessarily those
representing eigenvectors).

To state the result we need to introduce a few concepts. Let (T, a) be a
labeled tree; for brevity we will often omit the symbol for the weight function
in our exposition. For an unordered pair of vertices u, v of distinct vertices
of T we let M(u, v) denote the set of all maximum matchings M of T with
the property that edges of the (unique) u−v path in T belong alternately to
M and not to M , with the condition that both the first and the last edge
of the path (that is, those incident to u and v) belong to M . A necessary
condition for the set M(u, v) to be non-empty is that the distance between
u and v be odd, but note that this condition does not need to be sufficient;
though, if uv is an edge of some maximum matching, then the setM(u, v) is
automatically non-empty. A pair of vertices u, v for which M(u, v) 6= ∅ will
be called maximally matchable.

Further, for any maximally matchable pair of vertices u, v and a maximum
matching M ∈ M(u, v) let αu,v(M) denote the product of all the weights
a(e), ranging over all edges e of M that are not contained in the unique u−v
path P in T . (The line over the pair of vertices u, v in the subscript indicates
that edges of M ∩ P are not considered in the product; a product over an
empty set is considered to be equal to 1.) Also, for the same pair of vertices
u, v let α(u, v) be the product of all the values of a(e) taken over all the
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edges e in the path P (necessarily of odd length), and multiplied by +1 or
−1 depending on whether the distance between u and v is congruent to +1
or −1 mod 4; if u, v are not maximally matchable we set α(u, v) = 0. With
this in hand we may associate with any maximally matchable pair of vertices
u, v of T the value

µT (u, v) = α(u, v) ·
∑

M∈M(u,v)

(αu,v(M))2 ;

it follows that µT (u, v) = 0 if u, v is not a maximally matchable pair (which
includes the case u = v). Finally, letting M be the set of all maximum
matchings in T , for every M ∈ M let α(M) be the product of the weights
a(e) taken over all edges e of M , and let

m(T ) =
∑
M∈M

(α(M))2 .

In this terminology and notation we have:

Theorem 4 [11] Let (T, a) be a labeled tree with vertex set V . Then, its
pseudo-inverse (T ∗, a∗) has two distinct vertices u, v ∈ V joined by an edge e
if and only if u, v is a maximally matchable pair in T , with weight of e given
by

a∗(e) = a∗(uv) =
µT (u, v)

m(T )
.

It may be of independent interest to sketch the ideas upon which the proof
of this theorem in [11] is based. A fundamental observation from elementary
linear algebra that we make use of is the following.

Theorem 5 Two symmetric square matrices A and B of the same dimen-
sion are generalized inverses of each other if and only if they have the same
null-space and, for every non-zero eigenvalue λ of A the quantity λ−1 is an
eigenvalue of B and the corresponding eigenspaces of A and B are identical.
More explicitly, if A = (aij) and B = (bij), then B is the generalized inverse
of A if and only if A and B have the same null-space, and every eigenvec-
tor f : [n] → R of A corresponding to a non-zero eigenvalue of A satisfies∑

j∈[n] bij
∑

k∈[n] ajkf(k) = f(i) for every i ∈ [n] .
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A second ingredient of fundamental importance and of independent inter-
est, used in [11], is the following, which uses the definition of the parameters
µT (u, v) and m(T ) introduced above, is:

Theorem 6 Let A be an adjacency matrix of a labeled tree (T, a) with vertex
set V and let B be a matrix (indexed the same way as A by elements of V )
with uv-th entry equal to µT (u, v)/m(T ) for every u, v ∈ V . Then, A and B
are Gaussian equivalent.

The actual proof of Theorem 4 in [11] is then a combination of the pre-
ceding two results with further calculations related to alternating paths in
trees.

We conclude with and example in which we determine the generalized
inverse of the path P5 on 5 vertices. Here, m(P5) = 3, and in what follows
we let A, D and P T be, respectively. the adjacency matrix of P5, the diago-
nal matrix with eigenvalues of P5, and the orthonormal matrix with columns
formed by the corresponding orthogonal eigenvectors P5.

A=


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 , D=


0 0 0 0 0
0 1 0 0 0
0 0 −1 0 0

0 0 0
√

3 0

0 0 0 0 −
√

3



P T=


√

3/3 0 −
√

3/3 0
√

3/3
−1/2 −1/2 0 1/2 1/2
−1/2 1/2 0 −1/2 1/2√

3/6 1/2
√

3/3 1/2
√

3/6√
3/6 −1/2

√
3/3 −1/2

√
3/6


Let D∗ be formed from D by inverting the non-zero entries. The adja-

cency matrix A∗ of the pseudoinverse P ∗5 of the path P5 then is

A∗ = PD∗P T=


0 2/3 0 −1/3 0

2/3 0 1/3 0 −1/3
0 1/3 0 1/3 0
−1/3 0 1/3 0 2/3

0 −1/3 0 2/3 0


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CONCLUSION

In this paper we gave a brief survey of results on (generalized) inverses of
labeled trees, including an outline of a new proof of a formula for these
generalized inverses.

A possible new avenue of research in this area would be to investigate
generalized inverses of connected graphs which are not trees. A first step
in this direction has been done in [10] by considering generalized inverses of
cycles.
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[9] Pavĺıková, S.: A note on inverses of labeled graphs, Australasian J.

Combinatorics 67 (2017), 222–234.
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