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REMARK ON THE DOMINANT WEIERSTRASS CRITERION FOR
THE UNIFORM CONVERGENCE OF SERIES OF FUNCTIONS

Vladimı́r Baláž, Alexander Maťašovský and Tomáš Visnyai
Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava

Radlinskho 9, 812 37 Bratislava, vladimir.balaz@stuba.sk, alexander.matasovsky@stuba.sk,
tomas.visnyai@stuba.sk

Abstract: The condition of the dominant Weierstrass criterion is the sufficient condition for
the uniform convergence of series of functions. In this article is shown that this really is not
a necessary condition, as at the first sight it seems to be. In the effort to find necessary and
sufficient conditions for the uniform convergence of series of functions, it would be enough for
a smaller class of sequences of functions, we will investigate two special types of sets of se-
quences of functions. In this context, there is studied the notion of variation of a sequence of
real numbers.

Keywords: series of functions, uniform convergence, variation of function, variation of se-
quence.

INTRODUCTION

This article deals with the well-known dominant Weierstrass criterion of uniform convergence
of series of functions. We will show that the converse of this criterion is not true. This fact leads
us to split the sequences of non-negative functions into two types. We give a simple characteri-
zation of these types. Finally, we connect our considerations with the notion of variation of the
function.

1 BASIC NOTIONS

We recall some basic notions. Suppose M ⊆ R and for each n ∈ N we have a function
fn : M → R, by (fn)

∞
n=1 we denote a sequence of functions defined on M . For each fixed

x ∈ M , (fn (x))
∞
n=1 is a sequence of numbers, and it makes sense to ask whether this sequence

converges. If the sequence (fn (x))
∞
n=1 converges for each x ∈ M , a function f : M → R

defined by the following way
f(x) = lim

n→∞
fn (x)

is called the pointwise limit of the sequence (fn)
∞
n=1, it is said fn converges pointwise to f on

M . This is abbreviated by fn → f .

The sequence (fn)
∞
n=1 of functions fn : M → R (n = 1, 2, . . . ) converges uniformly to a func-

tion f : M → R on M , if for each ε > 0 there is an n0 ∈ N so that whenever n ≥ n0 and
x ∈M we have |fn (x)− f(x)| < ε. In this case, we write fn ⇒ f .

Uniform convergence is a stronger condition than pointwise convergence, if fn ⇒ f then
fn → f . The converse is not true.
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Let (fn)
∞
n=1 be a sequence of real-valued functions on a set M ⊆ R, and (sn)

∞
n=1 be the sequence

of partial sums of the first n terms

sn (x) =
n∑

i=1

fi(x).

Then the series
∑∞

i=1 fi is pointwise convergent on M to a function s if and only if for each
x ∈M the sequence (sn(x))

∞
n=1 converges to s(x), and the series

∑∞
i=1 fi is uniformly conver-

gent on M to s if and only if the sequence (sn)
∞
n=1 converges uniformly to s on M .

Let us also recall the definition of variation of a function. Consider the collection D of ordered
(n + 1)-tuples of numbers x0 < x1 < · · · < xn belong to M , M ⊆ R, where n is an arbitrary
natural number. The variation of a real-valued function f : M → R is given by

Var(f) = sup
D

{
n∑

i=1

|f (xi)− f (xi−1)|

}
.

2 MAIN RESULT

The following Theorem is well-known assertion so-called dominant Weierstrass criterion (see
[1], [5]). For a shortness of the proof, we remember it.

Theorem 1. Let fn : M → R (n = 1, 2, . . . ), M ⊆ R. Suppose that there exist numbers
an ≥ 0 (n = 1, 2, . . . ) such that

(1) for all x ∈M, |fn (x)| ≤ an (n = 1, 2, . . . ),

(2)
∑∞

n=1 an < +∞.

Then the series
∑∞

n=1 fn(x) converges uniformly on M .

Proof. We use the Cauchy criterion for uniform convergence. Given ε > 0, we must find
a response n0 ∈ N, independent of x, such that n0 ≤ m < n implies that∣∣∣∣∣

n∑
k=m+1

fk (x)

∣∣∣∣∣ < ε.

We know that ∣∣∣∣∣
n∑

k=m+1

fk (x)

∣∣∣∣∣ ≤
n∑

k=m+1

|fk (x)| ≤
n∑

k=m+1

ak.

The convergence of
∑∞

n=1 an guarantees an n0, independent of x, for which this sum is less
than ε when n0 ≤ m < n.

Consider the following proposition, it is the converse of the previous Theorem 1. There arises
a natural question whether this proposition is true.
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Proposition 2. If the series
∑∞

n=1 fn converges uniformly on the set M ⊆ R then there exist
numbers an ≥ 0 (n = 1, 2, . . . ) having the properties (1) and (2) of Theorem 1.

We will show that in generality the Proposition 2 is false. For this is enough to construct
a sequence (fn)

∞
n=1 of functions such that

∑∞
n=1 fn converges uniformly on M and there do not

exist numbers an ≥ 0 having the properties (1) and (2).

We are going to construct such a sequence of functions. We use a construction from P. R. Hal-
mos (see [3]).

Example 3. Let M = 〈0, 1〉, we define a sequence of functions (fn)
∞
n=1 for n = 1, 2, . . . by the

following way:

fn (x) =


2(n+ 1)x− 2 if x ∈

(
1

n+1
, 2n+1
2n(n+1)

〉
,

−2(n+ 1)x+ 2(n+1)
n

if x ∈
(

2n+1
2n(n+1)

, 1
n

〉
,

0 otherwise.

See the Fig. 1.

y

x1
2

1

1

0

(a) Graph of function f1 (x).

y

x1
3

1
2

1

1

1
2

0

(b) Graph of function f2 (x).

y

x1
n+1

1
n

1

1

1
n

0

(c) Graph of function fn (x).

Fig. 1. Elements of sequence of functions (fn)
∞
n=1.

The m-th partial sum sm (x) = f1 (x) + f2 (x) + · · · + fm (x) is the function, which equals
to zero on

〈
0, 1

m+1

〉
and elsewhere its graph is created by the legs of isosceles triangles, as it

shows Fig. 2.
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Let s(x) = limm→∞ sm (x). Then s(x) is the function defined on 〈0, 1〉 as follows: s(0) = 0 and
s(x) is make up by the legs of isosceles triangles having the altitude equals to 1

m
on
(

1
m+1

, 1
m

〉
for m = 1, 2, . . . . Clearly |sm (x)− s(x)| = 0 for x ∈

〈
1

m+1
, 1
〉

and elsewhere we have
|sm (x)− s(x)| ≤ 1

m+1
for the reason that the remaining isosceles triangles having the biggest

altitude 1
m+1

.

Let ε > 0. Chose n0 = n0(ε) such that 1
n0+1

< ε. Let m ≥ n0 then for all x ∈ 〈0, 1〉 we have
|sm (x)− s(x)| ≤ 1

m+1
≤ 1

n0+1
< ε. Therefore (sm)

∞
m=1 converges uniformly to s on 〈0, 1〉.

Now we show that there are no numbers an ≥ 0 (n = 1, 2, . . . ) with the properties (1) and (2)
of Theorem 1. If there exist such numbers then from (1) we have that an ≥ 1

n
(n = 1, 2, . . . ).

Therefore (2) does not hold, because
∑∞

n=1 an ≥
∑∞

n=1
1
n
= +∞.

y

x1
m+1

1
m

1
3

1
2

1
2

1
m

1

1

0

Fig. 2. Graph of function sm (x) = f1 (x) + f2 (x) + · · ·+ fm (x).

The previous example leads us to study the following situation.

Let fn (n = 1, 2, . . . ) be non-negative functions defined on a set M, M ⊆ R. Split the
sequences (fn)

∞
n=1 of such functions into two types:

(A)
∞∑
n=1

sup
x∈M

fn (x) < +∞,

(B)
∞∑
n=1

sup
x∈M

fn (x) = +∞.

It is clear that for sequences of functions of type (A) the dominant Weierstrass criterion is the
necessary and sufficient condition for the uniform convergence of series of functions. Our aim
is to characterize these two types of sequences of functions.

Let (fn)
∞
n=1 be of the type (B). Then for every n there exists xn ∈M such that

fn (xn) > sup
x∈M

fn (x)−
1

n2
,
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therefore
∞∑
n=1

fn(xn) ≥
∞∑
n=1

sup
x∈M

fn (x)−
∞∑
n=1

1

n2
= +∞.

Hence
∑∞

n=1 fn(xn) = +∞ for the selected sequence (xn)
∞
n=1 where xn ∈M , n = 1, 2, . . . .

We obtain the following Proposition.

Proposition 4. If the sequence (fn)
∞
n=1 is of the type (B), then there exists a sequence (xn)

∞
n=1

of numbers from M such that
∞∑
n=1

fn(xn) = +∞.

Another situation is for the sequence (fn)
∞
n=1 of the type (A). If the sequence (fn)

∞
n=1 is of the

type (A) and (xn)
∞
n=1 is an arbitrary sequence of numbers from M then the following inequality

holds:
fn (xn) ≤ sup

x∈M
fn (x) , n = 1, 2, . . . .

From this we have
∞∑
n=1

fn(xn) ≤
∞∑
n=1

sup fn (x) < +∞.

Hence
∞∑
n=1

fn(xn) < +∞.

We proved the following proposition.

Proposition 5. If the sequence (fn)
∞
n=1 is of the type (A), then for every sequence (xn)

∞
n=1

of numbers from M holds
∞∑
n=1

fn(xn) < +∞.

From Propositions 4 and 5 we get a characterization of sequences (fn)
∞
n=1 of the type (B)

and (A) respectively.

Theorem 6. A sequence (fn)
∞
n=1 is of the type (B) if and only if there exists a sequence (xn)

∞
n=1,

xn ∈M , n = 1, 2, . . . such that
∞∑
n=1

fn(xn) = +∞.

Theorem 7. A sequence (fn)
∞
n=1 is of the type (A) if and only if for every sequence (xn)

∞
n=1,

xn ∈M , n = 1, 2, . . . we have
∞∑
n=1

fn(xn) < +∞.

12



For more results concerning
∑

fn(xn) see for example [2], [4] or [6].

In the following, we will investigate the above-mentioned properties from the point of view
variation of a sequence.

Let a = (an)
∞
n=1 be a sequence of real numbers. The variation of a sequence a is called the

real number

Var(a) =
∞∑
j=1

|aj − aj+1|.

In the other case it says that a = (an)
∞
n=1 has infinite variation. It is well known that if

a sequence a = (an)
∞
n=1 has finite variation, then it converges. The converse in not true e.g.

a = (an)
∞
n=1 =

(
1,−1, 1

2
,−1

2
, . . . , 1

n
,− 1

n
, . . .

)
.

We are going to study the variation of a sequence (fn(x))
∞
n=1 for x ∈M .

Proposition 8. If F = (fn)
∞
n=1 is a sequence of functions of the type (A), then for each x ∈ M

we have

Var (F (x)) =
∞∑
j=1

|fj(x)− fj+1(x)| < +∞.

Proof. By the assumption the sequence (fn)
∞
n=1 of non-negative functions fn is of the type (A)

and
∞∑
n=1

|fn (x)| =
∞∑
n=1

fn (x) < +∞.

Let (an)
∞
n=1 is an arbitrary sequence having the property

∑∞
n=1 |an| < +∞ then we also have∑∞

j=1 |aj − aj+1| < +∞. For this it is enough to realise that

|a1 − a2|+ |a2 − a3|+ · · · ≤ |a1|+ 2 |a2|+ 2 |a3|+ · · · < +∞.

Denote by K =
∑∞

n=1 supx∈M fn (x). From the previous it is clear, that for all x ∈M we have
Var (F (x)) ≤ 2K < +∞. Moreover supx∈M Var (F (x)) ≤ 2K < +∞.

How it works with the variation of a sequence (fn)
∞
n=1 that is of the type (B). We would expect

that there exists such x ∈M that

Var (F (x)) = +∞, F = (fn)
∞
n=1 .

We show that the above hypothesis is false. It is enough to take into consideration the sequence
(fn)

∞
n=1 in the Example 3 where the sequence (fn)

∞
n=1 is of the type (B) because

∞∑
n=1

sup
x∈〈0,1〉

fn (x) =
∞∑
n=1

1

n
= +∞

and fn ≥ 0 (n = 1, 2, . . . ) on 〈0, 1〉. Fix x0 ∈ 〈0, 1〉. If x0 = 0 or x0 = 1 then fn (x0) = 0 for
all n = 1, 2, . . . and therefore Var (F (x0)) = 0. Let 0 < x0 < 1. Then there exists m ≥ 1 such
that

1

m+ 1
≤ x0 ≤

1

m
.
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For every n 6= m we have fn (x0) = 0. Hence

Var (F (x0)) =
∞∑
j=1

|fj(x0)− fj+1(x0)|

≤ |fm−1(x0)− fm(x0)|+ |fm(x0)− fm+1(x0)|
= 2fm (x0) < +∞.

Therefore for all x0 ∈ 〈0, 1〉 the inequality Var (F (x0)) < +∞ holds. Moreover it is easy
to see that

sup
x∈〈0,1〉

Var (F (x)) < +∞.

A simple estimate gives

Var (F (x)) ≤ 2 |fn (x0)| ≤ 2f1

(
3

4

)
= 2.1 = 2.

Hence we found a sequence of functions (fn)
∞
n=1 being of the type (B) nevertheless

Var (F (x)) < +∞, for each x ∈M = 〈0, 1〉.

Example 9. At the same moment we manage to find an example of sequence of functions
G = (gn)

∞
n=1 defined on the interval 〈0, 1〉 with the following properties:

i) for all x ∈ 〈0, 1〉 the variation Var (G(x)) <∞,

ii) gn converges uniformly to g,

iii) for all n ∈ N the variation Var (gn(x)) <∞ while Var (g(x)) =∞ and Var (gn − g) =
∞.

It is enough to take the sequence G = (gn)
∞
n=1 where gn = f1 + f2 + · · ·+ fn and functions fn,

(n = 1, 2, . . . ) are from the Example 3. It is easy to see that the sequence G = (gn)
∞
n=1 fulfils

all desired properties.

CONCLUSION

On the basis of the previous text the following two problems arise.

1) What premisses we need to add to the Proposition 2 to be this proposition true, may be
for a smaller class of sequences of functions.

2) To find a suitable characterization of sets of sequences of functions of type (A) and (B)
respectively.
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Abstract: In the contribution there is constructed a group of a two-dimensional function 

solution space of ordinary linear differential equations of the second order. Considerations 

serve as the preparation for further constructions of related multistructures, for example 

noncommutative hypergroups. 

 

Keywords: Noncommutative group; differential equation; linear space. 

 

 

INTRODUCTION 

 

     Teaching mathematics to university students of various specializations requires aiming 

students’ efforts at linking up different mathematics theories in order that they could more 

profoundly understand the relations between studied parts of mathematics. This article offers 

the possible linkage between teaching materials of mathematical analysis and the theory of 

algebraic structures, specifically the relation of common differential equations of the second 

order and the concept of an ordered group. Using the construction of the noncommutative 

ordered group of linear spaces of these differential equations’ solutions there is demonstrated 

the connection between classical problems of mathematical analysis and the theory of 

algebraic structures. The applied concept appeared in monographs [3], [4], [11], [12], [13] and 

articles [7], [8]. The set of all real numbers is denoted as R; under C(J) (sometimes also C0(J)) 

there is understood the ring of all continuous functions on an interval J  R with the usual 

addition and multiplication of functions. Similarly, the ring of all continuous functions on the 

interval J which have all derivations up to the order n for any natural number n will be 

denoted as Cn(J). 

 

 

CONSTRUCTION A NONCOMMUTATIVE GROUP (G(F),·)   

 

     Let us describe the construction of the group, possibly an ordered group, of linear 

differential operators of the second order which form left sides of usual homogenous 

differential equations in the form 

                                         y’’ +  p(x) y’ +  q(x) y  = 0  .                                                    (1) 

     During the construction we will apply considerations presented in [10]. Let J  R  be an 

open interval in the set of real numbers; we do not exclude the case J = R. We will habitually 
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denote Ck(J) as the commutative ring of all real functions  f: J  R  which have continuous 

derivations on the interval J up to the order k included, i.e. in all points x  J . Instead of C0(J) 

we will use the following: C(J) is the ring of all continuous real functions of one variable 

defined on the interval J; C+(J) is the subsemiring of the ring C(J) formed by all positive 

continuous functions, so 

C+(J) = { f: J   R; f(x)   0 , x  J } . 

The set of all differential equations (1), where p C+(J), q C(J), will be A2(J) in accord with 

[8]. Further, Id is an identity operator on C2(J), i.e. Id y = y  for every function  y  C2(J), and 

let us set  D = 
dx

d
, so Dy(x) = y’(x  )for every function  y  C2(J) . Then L(p,q) will denote 

the differential operator for the pair of functions  p C(J), q C(J) as follows 

L(p, q) = D2 + p(x) D + q(x) Id  . 

In this notation the equation (1) is represented as L(p,q)(y) = 0 . Let us further set  

                            LA2(J) = {L(p, q): C2(J)   C(J); [p, q]  C+(J)  C(J)}  ,                (2) 

i.e. LA2(J) means the set of all above described differential operators. For r R let us denote 

r: J   R as a constant function with a value r . 

 

Proposition 1. Let J  R be an open interval, LA2(J) = {L(p, q); p, q C(J), p(x) 0, x J}. 

For any pair of differential operators L(p1, q1) , L(p2, q2)  LA2(J) let us set 

L(p1, q1) · L(p2, q2) = L(p1 p2 , p1 q2 + q1) 

and L(p1, q1)   L(p2, q2), if p1(x) = p2(x), q1(x)   q2(x) for an arbitrary element x J .  Then  

(LA2(J), ·,  ) is a noncommutative ordered group with a unit element L(1 ,0 ). 

 

Proof: See [8]. Let us remark that for the noncommutative group LA2(J) constructed in this 

way the unit element is an operator L(1 ,0 ) and the inverse element to operator L(p, q) is an 

operator L(
p

q
,

p

1
 ). 

     In the group theory, the term normal or invariant subgroup of the given group plays also an 

important role. Let us note that a nonempty subset H of a group G (on the set H we consider 

the restriction of the operation defined on G) is called a subgroup of the group G, if e  H (a 

unit or a neutral element of group G); further if for every pair of elements a, b  H there 

applies a.b  H and also for every element a H there exists a1 H (where a1 is an inverse 

element to the element a H G). The subgroup H of the group G is called normal (also an 

invariant subgroup of group G or a normal divisor of group G), if for every element a G 

there applies a1 · H · a   H (condition P1). Let us remark that this condition is equivalent to 

each of the following conditions: 

P2:  For every element a G there applies  a1 · H · a = H,  

P3:  For every element a G there applies  a · H · a1 = H, 

P4:  For every element a G there applies  a · H · a1  H.  

The proof of the equivalence of the given conditions is not complicated and could be found in 

any more systematic paper (possibly textbook) on the fundamentals of the group theory.  

     Let us now denote L1A2(J) as a subset of the group LA2(J) defined by equation 
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L1A2(J) = { L(p, q) ; L(p, q) LA2(J), p(x)   1},   so 

L1A2(J) = {L(1, q ); q C(J)} . 

Proposition 2.  (L1A2(J), ·) is a normal (commutative) subgroup of the group (LA2(J), ·) 

isomorphic with (C(J), +).   

Proof: It is evident that a neutral element (a unit) L(1 ,0 ) of the group (LA2(J), ·) belongs 

also to the subgroup L1A2(J) of the group (LA2(J), ·).  Let L(1, q ) L1A2(J),  L(1, u ) 

L1A2(J). Then 

L1(1, q ) = L(1,  q ) L1A2(J) 

(similarly  L1(1, u ) L1A2(J) ) and further  

L(1, q ) · L(1, u ) = L(1, q+u ) L1A2(J), 

so (L1A2(J) , ·) is a subgroup of the group (LA2(J) , ·) .  

     There remains to prove that the group (L1A2(J) , ·) is a normal subgroup of the given 

group. Let then L(1, u ) L1A2(J), L(p, q ) LA2(J) be arbitrary differential operators 

belonging to the given sets. Then there holds: L1(p, q) · L(1, u ) . L(p, q) = L(
p

q
,

p

1
 ) · L(p, 

q+u) =   L(1 , 
p

q

p

u

p

q
 ) = L(1 , 

p

u
) L1A2(J), so  L1(p, q) · L1A2(J) · L(p, q)   L1A2(J) 

for every operator  L(p, q ) LA2(J), therefore the group (L1A2(J) , ·) is a normal subgroup of 

the group (LA2(J) , ·). It is evident that (L1A2(J) , ·)    (C(J), +).                                       □ 

     Now we will show the construction of a noncommutative ordered group of linear spaces of 

smooth functions of C2 class defined on the interval J  R (which can also be equal to R). 

     Let 1 ,2  C2(J) be linearly independent functions. More precisely expressed, functions 

1 ,2  form a fundamental system of solutions of a homogenous differential equation whose 

coefficients are continuous functions (which means that the Wronskian W[1,2] does not 

equal zero in any point of the interval J). Let us denote V(1,2) the linear space of dimension 

2 created by all functions in the form 

                                        )x(c)x(c)x(y 2211    ,                                                  (A) 

where c1 , c2  R , so 

V(1 ,2) = {c11 + c2 2 ; 1 ,2  C2(J), c1 , c2  R}. 

     Let us arrange a homogenous differential equation of the second order for functions           

y  V(1 ,2). There holds 

                                       )x(y)x(c)x(c 2211
                                                    (B) 

                                        )x(y)x(c)x(c 2211
                                                   (C) 

We will exclude constants c1, c2. Since functions 1 ,2 are linearly independent on the 

interval J, their Wronskian for every number x  J equals 

0
21

21

21 



)x()x(

)x()x(
],[W






 

Let us note that for the sake of the clear arrangement we will further use the notation of the 

Wronskian in the form W[1 ,2 ] instead of W1 ,2 , which is sometimes used in the 

mathematics literature. From the system of equations (A), (B) we get: 
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c1 = 
],[W

y

y

21

2

2








 = 

],[W

)x()x(y)x()x(y

21

22



 
, 

c2 = 
],[W

y

y

21

1

1








 = 

],[W

)x()x(y)x()x(y

21

11



 
. 

After substituting to (C) we will get: 





],[W

)x()x(
)x(y)x(y

21

12





],[W

)x()x(
)x(y

21

12



 
 + 




],[W

)x()x(
)x(y

21

21





],[W

)x()x(
)x(y

21

21



 
 

so 

0
],[W

)x()x()x()x(
)x(y

],[W

)x()x()x()x(
)x(y)x(y

21

2121

21

2121 














 . 

If we use the notation with determinants and introduce the following representation 

D[1 , 2] = 
21

21



 
 , the above given equation can be represented in the form 

0y
],[W

],[W
y

],[W

],[D
y

21

21

21

21 











  , 

so with the notation introduced in part 2 we can write 

                                 

0y
],[W

],[W
,
],[W

],[D
L

21

21

21

21 








 









  ,                                          (D) 

otherwise L(p, q) y  = 0, where  p = 
],[W

],[D

21

21




 , q = 

],[W

],[W

21

21



 
 . 

Let us denote F  C2(J) C2(J) as the set of all ordered pairs [1,2] of linearly independent 

functions 1 , 2 ,  for which D[1 , 2]  0 on the interval J , thus 

0)x()x()x()x( 2121    for every number x  J . 

Then V(1 , 2) is a linear space of dimension 2 of all solutions of a homogenous differential 

equation of the second order  

L(p, q) y = 0 ,     so 

y’’ +  p(x) y’ +  q(x) y  = 0 , 

where p(x) = 
)x](,[W

)x()x(

)x()x(

21

21

21





 

, q(x) =  
)x](,[W

)x](,[W

21

21



 
 . 

Example. Let 1 , 2  R  be real numbers for which  1  2  0 . Let us set 1(x) = 
x1e


, 

2(x) = e2x, x R. We will arrange a differential equation whose space of solutions is the 

space of dimension 2 of functions 

y(x) = c1
x1e


 + c2 e

2x,      c1, c2  R  . 

Through a usual procedure we will get 

                                           y’’  (1 + 2) y’ + 12 y  = 0  .                                              (E) 
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      Let us now denote the system of all spaces of dimension 2 (planes) V(1 ,2) as G(F), 

where [1 ,2] F , and where F denotes the set of all pairs of functions 1, 2  C2(J) such 

that 

],[W 21

21

21





 

  0 . On the system G(F) let us define a binary operation by the following 

formula: 

     For an arbitrary pair of spaces V(1 ,2)  G(F), V(1 , 2)  G(F) let us set  

V(1 ,2) · V(1 , 2) = V(1 , 2) ,  

where {1,2} is the base of the space V(1,2) such that the function y=1(x), y=2(x), xJ 

form the fundamental system of solutions of the linear differential equation of the second 

order 

0y
],[W],[W

],[W],[W],[W],[D
y

],[W],[W

],[D],[D
y

2121

21212121

2121

2121 


















  

i.e.                                                y’’ +  p(x) y’ +  q(x) y  = 0   , where 

p(x)=
],[W],[W

],[D],[D

2121

2121








, q(x)=

],[W],[W

],[W],[W],[W],[D

2121

21212121








. 

Let us further denote H(F) as the subset of the set G(F) such that V(1 ,2)  H(F) if and only 

if there applies 

0
)x()x()x()x(

)x()x(

2211

21


 



 

on the interval J . We will prove the following Theorem: 

 

Theorem: Let J  R be an open interval. The system (G(F),·) is a noncommutative group of 

vector spaces with a neutral element  V(1, e
 x

 ) , in which H(F) is a normal subgroup. 

Proof: There is a bijective correspondence between structures (more precisely grupoids) G(F) 

and  LA2(J) because each operator L(p, q ) LA2(J) determines accurately one linear space 

V(1 ,2) of the solution of the equation L(p,q)(y) = 0, where the pair of functions 1, 2  

C2(J) form the fundamental system of solutions of the above given solution, thus the basis 

{1,2}  of the space V(1 ,2) . Vice versa, to every space V(1 ,2)  G(F)  there exists an 

equation 

                                             y’’ +  p(x) y’ +  q(x) y  = 0   ,                                                (3) 

whose solution space of dimension two is just the space V(1 ,2) . The coefficients in this 

given equation (3) are 

p(x)  = 
],[W

],[D

21

21




 ,   q(x)  = 

],[W

],[D

21

21



 
 . 

Let us note that we can formally define the isomorphism of groups LA2(J), G(F), in which the 

normal subgroup  L1A2(J)  of group  LA2(J)  will map on the subgroup (let us denote it H(F))  

of the group G(F), formed by all vector spaces V(1 ,2), whose bases are constructed 

according to Proposition 2 by fundamental solutions systems of equations: 
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y’’ +  y’ + 
],[W

],[D

21

21



 
 y  = 0   , 

thus ],[W],[D 2121   . The last condition can be represented in the form 

2121   02121    , i.e. 
0)()( 112221    , 

so using the determinant we get this condition in the form 

                 0
)x()x()x()x(

)x()x(

2211

21


 


, for every number x  J .                   □         

      The following example will be very easy, in order to illustrate all the studied concepts. We 

will use linear spaces generated by fundamental systems of solution of linear differential 

equations of the second order with constant coefficients. 

 

Example.  Let J = R , 1(x) = ex,2(x) = e2x,1(x) = e2x, 2(x) = e3x, x R . According to the 

above mentioned definition we set  

V(1 ,2) · V(1 , 2) = V(1 , 2) , 

where {1,2} is the fundamental system of solutions of the linear differential equation which 

will be arranged according to the above mentioned instructions. The pairs of functions 

{1,2}, {1,2} form fundamental systems of solutions of these differential equations 

y’’ +    y’   2 y  = 0  , 

y’’  5 y’  + 6 y  =  0  , 

in the given order. Then {1 ,2} is the fundamental system of solutions of the differential 

equation 

                                                       y’’  5 y’  + 4 y  =  0  .                                               (4) 

The characteristic equation corresponding to this differential equation is in the form 

25+4=0 , with roots  =4,2=1. The linear space of the solutions of this differential 

equation is formed by all functions in the form 

y(x) = c1 e
4x + c2 e

x,    x R ,  c1, c2  R, 

so 1(x) = e4x, 2(x) = ex, x R . Thus we got  

V(ex , e2x) · V(e2x , e3x) = V(e4x , ex) . 

Moreover we will demonstrate that e.g. 

V(e4x , ex) · V(1 , ex) = V(1 , ex) · V(e4x , ex) . 

Indeed, V(e4x,ex) · V(1,ex) = V(1,2) , where {1,2} is the fundamental system of solutions 

of the differential equation y’’5y’ + 4 y = 0 , which is the above given equation (4) with the 

fundamental solution system 1(x) = e4x, 2(x) = ex, x R . Furthermore, if we denote         

V(1 , ex) · V(e4x , ex) = V(1 , 2) , the pair of functions {1 ,2} forms the fundamental 

system of solutions of the same differential equation (4). The space V(1, ex) is therefore the 

unit (neutral element) of the above constructed noncommutative group (G(F),) .  
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REMARK ON HYPERGROUPS 

      
Now let us briefly mention the possibility of the construction of hyperstructures on the set 

LA2(J). Hypergroups were introduced by F. Marty in 1934. Since then they have been studied 

in connection with algebraic structures, geometric structures, the algebraic theory of 

automata, the theory of convexity, and certain combinatorial problems of the discrete 

mathematics as well. Hypergroups and their applications are dealt with in details for exemple 

in [5], [6], [10] and [14]. A hypergroup is a pair (H, ), where H is a nonempty set, a binary 

hyperoperation   is the mapping of the Cartesian product H  H into the system of all 

nonempty subsets of the set H (often denoted P *(H)) which satisfies following two 

requirements:  

1o associativity axiom: a   (b   c) = (a   b)   c for every triad of elements a, b, c  H  

    (here  a   M = 
Mm

ma


  for every a  H,   M,  M  H); 

2o reproduction axiom: a   H = H = H   a for every a H.    

For any two nonempty subsets A, B of the set H let us define their superproduct as follows 

AB =   }Bb,Aa;ba{  .           

A subhypergrupoid of the hypergroup (H, ) is a pair (S, ), where SS  S. Let us note that 

the relation of incidence of nonempty sets A, B, i.e. A  B  , is in mathematics literature 

concerning hyperstructures usually denoted as A ≈ B. The hypergroup (H,  ) is called a 

transposition hypergroup or also a join space if it satisfies the transposition axiom:  

For each tetrad  a, b, c, d  H  there follows a   d  ≈ b  c from the relation b\ a ≈ c/d , where 

sets 

b\ a = {x  H; a  b   x},  c/d = {x  H; c  x   d} 

are called the left and right extensions (sometimes also left and right fraction) respectively.  

    Now let us bring back from the previous text the definition of the binary operation on the 

set LA2(J). 

For an arbitrary pair of differential operators  L(p1, q1) , L(p2, q2)  LA2(J) let us set 

L(p1, q1) · L(p2, q2) = L(p1 p2 , p1 q2 + q1) 

and L(p1, q1)   L(p2, q2), if p1(x) = p2(x), q1(x)   q2(x) for any element x J .  

There follows the Proposition about the existence of the hypergroup on the set  LA2(J). 

Proposition 3. Let J  R be an open interval; let  

LA2(J) = {L(p, q): C2(J)   C(J); [p, q]  C+(J)  C(J)} 

be a set of all ordinary linear differential operators of the second order – i.e. there holds 

L(p,q)(y) = y’’+ p(x)y’+ q(x)y = 0, y  C2(J). 

Let the binary operation   on LA2(J) be defined as follows  

L(p1, q1)   L(p2, q2) = {L(u1, u2)  LA2(J); L(p1, q1) · L(p2, q2)   L(u1, u2)}, 

where p1 p2 = u1, p1 q2 +q1  u2, for an arbitrary pair of operators L(p1, p2), L(q1, q2)LA2(J). 

Then the hypergroupoid (LA2(J),  ) is a noncommutative transposition hypergroup, i.e. a 

noncommutative join space. 

Proof: Is given in the paper [8] on page 82.  
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Note: In the proof of Proposition 3 there are used mathematics theories which exceed the 

scope of this article (e.g. the ordered group theory). Moreover, is possible to expand the 

construction of hyperstructures to the set of linear spaces of smooth functions of dimension 

two, similarly as we did in the previous text while constructing groups. The appropriate 

constructions are quite tedious and will be dealt with in both authors’ next articles.  

 

 

CONCLUSION  

 

This article is intended for university students as an example of possible connections among 

mathematics theories commonly presented to them during their university study. With this 

article both authors follow up the previous papers, especially the latter one (e.g. [1], [2], [7], 

[8], [9]). We proceeded from the theory of differential equations solutions, i.e. classical 

mathematics analysis. In the process of constructing the noncommutative group (G(F),) we 

obtained a certain binary operation on the set G(F) and specified some of its properties, which 

belongs to the theory of algebraic structures. Such a connection between mathematical 

analysis and algebra is not the only one. Based on the given procedures it is possible e.g. to 

form the construction of binary hyperstructures, which was shown in the closing 

remark/comment. The above discussed connection of the classical mathematical analysis and 

the theory of algebraic structures and hyperstructures can enable students to penetrate the 

mentioned areas of higher mathematics and thus can contribute not only to deepening their 

knowledge, but also to developing their mathematical thinking.  
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Abstract: Assessment of higher education institutions is systemic process that uses empirical 

data to evaluate the study programs. The aim of the assessment is not only to evaluate the 

scientific outcomes and compare it with other institutions, but also to find the target values of 

scientific outcomes. In this paper, we use data envelopment analysis (DEA) method based on 

the linear programming to evaluate the efficiency of selected faculties in Slovakia. Data 

envelopment analysis is non-parametric, linear programming based method to assess the 

efficiency or performance of the homogeneous decision-making units (DMU) considering 

multiple inputs and outputs. It divides the set of examined DMUs into two parts: efficient and 

inefficient units. For each inefficient unit a reference target is calculated together with 

corresponding efficiency gap. However, it may not be feasible for inefficient DMU to achieve 

the efficiency of its reference target in one step. Various methods of stepwise benchmarking 

were proposed in the literature. In this paper, we evaluate target selection methods for 

assessment of the efficiency of selected faculties in Slovakia. 

 

Keywords: DEA analysis, stepwise benchmarking, efficiency. 

 

1 INTRODUCTION 

 

Efficiency evaluation of government spending is of great importance at a time when many states 

are facing the tight budgets. Because of the rising education demand and public resource 

constraints, politicians have focused on the performance of their education systems. Although 

the study of economics of education has a long tradition, performance comparison has always 

been a difficult task. The assessment of education systems, especially higher education 

institutions (HEI), has a long tradition in the UK and the US. In Slovakia, the assessment is 

much younger, the first assessment of HEI was issued in 2005. Since then, the Academic 

Ranking and Rating Agency (ARRA) each year addresses the evaluation of research and 

educational performance of higher education institutions [1]. 

 

Experience from Slovakia and many other countries [2] shows that the assessment of the quality 

of HEI is a good instrument for achieving improvements in the system efficiency [3]. However, 

there are many other aims of evaluation of efficiency, mainly to provide the general public with 

an overview of easy-to-understand criteria that will help students to choose suitable school for 

their study. Another ambition is to initiate the competition between institutions and thus to start 

changes at Slovakia’s HEI. 

 

The assessment of HEI is based on two main areas, the outcomes of research and education. 

ARRA selected a number of indicators and divided them into five groups: teachers and students, 

applications for study, publications and citations, PhD. studies and grant successes. The 

evaluation is based on a relative rating scale system using the highest values of indicators as 

the benchmark. As a result, the institution’s overall score is given by the average number of 

score of all five groups. 
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2 RELATED WORK 

 

In this paper we apply DEA-based method of stepwise benchmarking to ARRA data and show 

how inefficient faculties should improve their outputs. 

 

2.1 Data Envelopment Analysis 

 

Data Envelopment analysis (DEA) is one of the important means of economic management. It 

is a method for the comparative efficiency assessments in contexts where multiple 

homogeneous units deliver goods or services [4]. It assumes the existence of a convex 

production frontier, which is constructed using linear programming methods and is called the 

best-practice or efficient frontier. The first CCR model was published in 1978 by Charnes, 

Cooper and Rhodes [5]. The CCR model can be written in the form below. Both primary and 

dual models (called multiplication and envelopment models) are shown. 

 

Primary model Dual model 

𝑀𝑎𝑥     𝜃𝑜 = ∑ 𝑢𝑟

 𝑠

𝑟=1

𝑦𝑟𝑘 𝑀𝑖𝑛   𝜃 

𝑠. 𝑡. 𝑠. 𝑡. 
 

∑ 𝑣𝑖𝑥𝑖𝑘

𝑚

𝑖=1

= 1 

∑ 𝑢𝑟

𝑠

𝑟=1

𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0;   𝑗 = 1, … , 𝑛 

𝑢𝑟 , 𝑣𝑖 ≥ 𝜀;   𝑟 = 1, ⋯ , 𝑠;  𝑖 = 1, ⋯ , 𝑚 

 
∑ 𝑥𝑖𝑗𝜆𝑗

𝑚

𝑗=1

≤ 𝜃 ∙ 𝑥𝑖𝑘;   𝑖 = 1,2, … 𝑚 

∑ 𝑦𝑟𝑗 𝜆𝑗

𝑛

𝑗=1

≥ 𝑦𝑟𝑘;   𝑟 = 1,2, … 𝑠 

𝜆𝑗 ≥ 0;    𝑗 = 1,2, … 𝑛 

 

Here 𝑢𝑟, 𝑣𝑖, 𝑦𝑟𝑗, and 𝑥𝑖𝑗 are the weights given to the r-th output, the weights given to the i-th 

input, amount of the r-th output and amount of the i-th input, respectively. Number of DMUs 

is denoted by n, k is the DMU under evaluation and s and m is the number of outputs and inputs, 

respectively.  

 

A great variety of other models were proposed in the literature. All models use the same idea, 

however. The set of evaluated units called Decision Making Units (DMU) is divided by analysis 

into two parts: efficient and inefficient DMUs. For inefficient units, it is necessary to identify 

the factors that mostly influence their ineffective behaviour. For each inefficient unit, a 

reference set of benchmark targets is calculated together with the efficiency gap – the degree to 

which the DMU’s outputs should be improved in order to reach efficiency. The reference set is 

obtained by dual model, where 𝜆𝑗 are dual variables. The linear combination of DMUs, which 

produces more output than the evaluated DMU while utilizing the same amount of input, is 

called the target or benchmark unit. Dual variables are coefficients for this linear combination. 

The results of the analysis then lead to the elimination of sources of inefficiency and to the 

increase of the overall efficiency of the unit. 

 

2.2 DEA Stratification Model 

 

One of the issues frequently addressed in the literature is that it may not be feasible for an 

inefficient DMU to achieve its target’s efficiency in a single step – especially if the DMU is far 

from the efficient frontier [6]. To resolve this problem, several methods have been proposed in 
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the literature. The common idea behind these methods is to create intermediate, more easily 

achievable targets, usually called local targets. Seiford & Zhu [7] proposed an algorithm to 

remove DMU’s that lie on the original best-practice frontier to allow the remaining inefficient 

DMU’s to create a new, second-level best-practice frontier. If DMUs that lie on this new 

second-level frontier are removed, a third-level best-practice frontier can be formed, etc., until 

there is no DMU left. 

 

Algorithm: Determination of the lth-level best-practice frontier 

Step 1: Set l=1. Evaluate DEA CCR model to J1 to obtain first-level frontier DMUs. Set 

first-level best-practice frontier to E1. 

Step 2: Exclude the frontier DMUs from future DEA runs, set lll EJJ 1 . If 

1lJ , then stop. 

Step 3: Evaluate the new subset of inefficient DMUs, Jl+1, by DEA CCR model to obtain 

a new set of efficient DMUs E1+1. 

Step 4: Let 1 ll  and go to Step 2. 

Source: Seiford & Zhu [7] 

 

This paper focuses on how to choose intermediate targets for inefficient units. Alirezaee & 

Afsharian [8] proposed a layer measurement method that provides a strategy for moving into a 

better layer. It lacks the information on how to choose the target DMU on each layer, however. 

Hong et al. [9] developed a method for classifying new DMUs into layers. They also generated 

a path for improving the efficiency of inefficient units, but it doesn’t guarantee that it will reach 

the first layer. Estrada et al. [10] proposed a method of stepwise benchmarking using proximity-

based target selection. In Sharma & Yu [11], data mining and DEA are fused to provide a 

diagnostic tool for effectively measuring the efficiency of inefficient terminals and to prescribe 

the step-wise projection to reach the frontier. 

 

These methods do not address intermediate target values for particular inefficient DMU in 

detail. Several additional criteria were subsequently proposed in the literature that solve this 

impracticality problem. For example, in 2012, a target selection based on the preference 

structure, direction and similarity was proposed in Park, Bae, & Lim [6]. They construct a 

benchmarking path network based on benchmarking candidate DMUs. The optimal 

benchmarking path is searched based on the benchmarking objectives measured by resource 

improvement and the improvement direction proximity between each benchmarking candidate 

DMU. Park & Sung [12] proposed a new approach that integrates cross-efficiency DEA, K-

means clustering and context-dependent DEA methods to minimize the resource improvement 

pattern inconsistency in the selection of the intermediate benchmark targets of an inefficient 

DMU. Ramón, Ruiz & Sirvent [13] proposed a two-step benchmarking approach within the 

spirit of a context-dependant DEA that minimizes the distance to the DEA efficient frontier. 

Three-stage performance modeling using DEA and back propagation neural network was 

proposed by Kwon et al. [14] and used for evaluation of the healthcare industry. Super-

efficiency DEA with stepwise improvement model was applied by Suzuki & Nijkamp [15] in 

the context of an efficiency-improvement plan for inefficient global cities. All of these studies 

used various algorithms for determination of intermediate targets for inefficient units in the 

stepwise DEA method. 
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3 PROPOSED TARGET SELECTION METHOD 

 

In this paper, we propose a simple method of the intermediate target selection for inefficient 

DMU. Its main advantage over methods mentioned in the literature survey is its simplicity, as 

it does not require any other computational methods apart from the DEA method. As we stated 

in the previous chapter, for each inefficient unit DEA calculates the target values – the values 

the DMU has to achieve to become efficient. Target values form a new, “virtual” unit, 

calculated as a linear combination of efficient DMUs. This target unit will be used together with 

other DMUs as input for DEA analysis in the upper level. 

 

Table 1 shows the output values used in the assessment of economic faculties in Slovakia. 
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1. Faculty of Economics 

Technical University of Košice (EF TUKE) 
1 70 69 86 88 98 

2. Faculty of National Economy 

University of Economics (NHF EU) 
1 84 58 33 58 42 

3. Faculty of Economics and Management 

Slovak University of Agriculture (FEM SPU) 
1 64 49 58 48 25 

4. Faculty of Economics 

Matej Bel University (EF UMB) 
1 72 55 48 55 13 

5. Faculty of Business Economics 

University of Economics (PHF EU) 
1 68 31 44 80 16 

6. Faculty of Business Management 

University of Economics (FPM EU) 
1 76 57 28 65 10 

7. FPEDAS 

University of Žilina (FPEDAS) 
1 76 61 14 62 13 

8. Faculty of Economic Informatics 

University of Economics (FHI EU) 
1 80 57 32 45 8 

9. Faculty of Management 

Comenius University (FM UK) 
1 56 79 29 45 14 

10. Faculty of Economics 

Pan-European University (FEP PEVŠ) 
1 88 59 29 37 1 

11. Faculty of Business 

University of Economics (OF EU) 
1 73 47 22 44 11 

12. Faculty of Management 

University of Prešov (FM PU) 
1 55 50 28 31 17 

13. College of International Business 

ISM Slovakia in Prešov (ISM PO) 
1 64 45 1 1 8 

14. Faculty of Economics 

J. Selye University (EF  UJS) 
1 58 31 15 1 3 

 

Table 1. Data used for evaluation of efficiency of economic faculties 

Source: ARRA ranking 2015 
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We apply the stratification DEA model in context-dependent DEA to stratify the faculties into 

four levels. Set 𝐽1 contains all faculties. Level 1 contains four faculties that lie on the global 

best-practice frontier: 𝐸1 = {EF TUKE, NHF EU, FM UK, FEP PEVŠ}. These faculties work 

efficiently. After removing these DMUs from 𝐽1, the remaining units form the set 𝐽2 =

{FEM SPU, EF UMB, PHF EU, FPM EU, FPEDAS ŽU, FHI EU, OF EU, FM PU, ISM PO, EF UJS}. 

They are evaluated using DEA again. Six faculties lie at the local best-practice frontier, so 𝐸2 =

{FEM SPU, EF UMB, PHF EU, FPM EU, FPEDAS ŽU, FHI EU}. New subset of ineffective units 

is 𝐽3 = {OF EU, FM PU, ISM PO, EF UJS}. After removing these six DMUs, the remaining four 

faculties are evaluated. We get 𝐸3 = {OF EU, FM PU} and the remaining two inefficient 

faculties are 𝐽4 = {ISM PO, EF UJS}. 

 

Results for all four levels are shown in Table 2. 

 

 Level 1 Level 2 Level 3 Level 4 

Faculty 1. EF TUKE 

2. NHF EU 

9. FM UK 

10. FEP PEVŠ 

 

 

3. FEM SPU 

4. EF UMB 

5. PHF EU 

6. FPM EU 

7. FPEDAS ŽU 

8. FHI EU 

11. OF EU 

12. FM PU 

13. ISM PO 

14. EF UJS 

 

Table 2. Stratification DEA model results 

Source: own calculations 

 

Next, we find intermediate target values for one selected inefficient DMU. We selected ISM 

PO faculty that lies in the Level 4. Target values were already calculated in the 3rd DEA run 

and are listed in Table 3 as unit “ISM PO Target 2”.  This new virtual unit is added to the set 

𝐽2 and the DEA method is applied to a set of 11 DMUs. “ISM PO Target 2” virtual unit is 

inefficient and the intermediate target values for this unit are calculated. This new virtual unit 

is denoted by “ISM PO Target 1” and is consequently added to the set 𝐽1and the last DEA test 

is applied. Target values for “ISM PO Target 1” unit are denoted as “ISM PO Target”. 

 

The output values of all intermediate targets together with the real output values of ISM PO are 

displayed in Table 3 and Figure 1. For the ISM PO management, this list gives the output 

indicators values that can be gradually used as their target values. 

 

 Education Attractiveness R&D Doctoral study Grant 

ISM PO 2015 64,0 45,0 1,0 1,0 8,0 

ISM PO Target 2 68,0 47,8 23,7 40,4 12,7 

ISM PO Target 1 74,8 57,9 26,0 55,5 13,9 

ISM PO Target 80,6 62,4 50,5 59,8 44,6 

 

Table 3. Intermediate target values 

Source: own calculations 
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Fig. 1. Intermediate target values 

Source: own 

 

4 CONCLUSION 

 

In this paper, we presented the stratification DEA method together with the path-finding 

algorithm. It computes intermediate target values for inefficient units. We evaluated 14 

economic faculties in Slovakia. We divided them into 4 levels using the DEA stepwise 

benchmarking method. For one selected inefficient faculty, we determined intermediate target 

values that create a path of sequential 3-step increase of the faculty’s efficiency. 

 

Our approach differs from previously published papers in the algorithm used for searching the 

path for improving the efficiency of inefficient units. Unlike previous research, our method 

does not require the use of additional algorithms or software, but uses multiple instances of 

DEA analysis. In each step, the new target value is calculated using benchmark virtual units.  

 

To evaluate the efficiency of 14 economic faculties in Slovakia, we used data collected by the 

Academic Ranking and Rating Agency. In order to increase the relevance of the evaluation, it 

would be appropriate to include other quality indicators in future research. For example, the 

ARRA rating does not include the use of information and communications technologies. 

Modern teaching tools such as e-learning or Moodle are used not only as tools for knowledge 

[16], but also for increasing the interest of youth in science and technology [17], which 

ultimately improves the quality of education. 

 

References 

 

[1] ARRA, Report 2015, Accessed 17 January, 2017. [Online]. [Retrieved 2018-03-10].  

Available at: http://www.arra.sk/sites/arra.sk/files/file/ARRA_Sprava_2015.pdf 

[2] Böhm, P, Böhmová, G. (2016). Application of stratification DEA method in efficiency 

evaluation of the education sector in an international perspective, Globalization and its 

Socio-Economic Consequences, 16th international scientific conference proceedings, PTS 

I-V, 230-237 

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

EDUCATION ATTRACTIVITY R&D POSTGRADUAL GRANT

ISM PO 2015

ISM PO Target 2

ISM PO Target 1

ISM PO Target

30



[3] Böhm, P, Vojtekova, M. (2018). Evaluation of research and educational performance of 

selected faculties in Slovakia, INTED 2018 Proceedings, pp 6263-6270. doi: 

10.21125/inted.2018.1475 

[4] Thanassoulis, E. (2001). Introduction to the Theory and Application of Data Envelopment 

Analysis. Springer Science & Business Media New York 

[5] Charnes, A., Cooper, W., Rhodes, E. (1978). Measuring the efficiency of decision making 

units. European Journal of Operational Research 2, 429-444 

[6] Park, J., Bae, H. and Lim, S. (2012). A DEA-based method of stepwise benchmark target 

selection with preference, direction and similarity criteria. International Journal of 

Innovative Computing, Information and Control, 8(8), 5821-5834. 

[7] Seiford, L. M., Zhu, J. (2003) Context-dependant data envelopment analysis. Measuring 

attractiveness and progress. OMEGA, 31(5), 397-408 

[8] Alirezaee, M., Afsharian, M. (2007). Model improvement for computational difficulties of 

DEA technique in the presence of special DMUs. Applied Mathematics and Computation, 

186(2), 1600-1611. doi:10.1016/j.amc.2006.08.067 

[9] Hong, H. K., Ha, S. H., Shin, C. K., Park, S. C., and Kim, S. H. (1999). Evaluating the 

efficiency of system integration projects using data envelopment analysis (DEA) and 

machine learning. Expert Systems with Applications, 16(3), 283-296. doi:10.1016/s0957-

4174(98)00077-3 

[10] Estrada, S. A., Song, H. S., Kim, Y. A., Namn, S. H., & Kang, S. C. (2009). A method of 

stepwise benchmarking for inefficient DMUs based on the proximity-based target 

selection. Expert Systems with Applications, 36(9), 11595-11604. 

doi:10.1016/j.eswa.2009.03.035 

[11] Sharma, M. J., Yu, S. J. (2009). Performance based stratification and clustering for 

benchmarking of container terminals. Expert Systems with Applications, 36(3), 5016-5022. 

doi:10.1016/j.eswa.2008.06.010 

[12] Park, J., Sung, S. (2016). Integrated Approach to Construction of Benchmarking Network 

in DEA-Based Stepwise Benchmark Target Selection. Sustainability, 8(7), 600. 

doi:10.3390/su8070600 

[13] Ramón, N., Ruiz, J. L., & Sirvent, I. (2018). Two-step benchmarking: Setting more 

realistically achievable targets in DEA. Expert Systems with Applications, 92, 124-131. 

doi:10.1016/j.eswa.2017.09.044 

[14] Kwon, H., Marvel, J. H., & Roh, J. J. (2017). Three-stage performance modeling using 

DEA–BPNN for better practice benchmarking. Expert Systems with Applications, 71, 429-

441. doi:10.1016/j.eswa.2016.11.009 

[15] Suzuki, S., & Nijkamp, P. (2017). Performance Measurement of Global Cities: 

Combination of a Stepwise Improvement Model with an SE Model. New Frontiers in 

Regional Science: Asian Perspectives Regional Performance Measurement and 

Improvement, 101-115. doi:10.1007/978-981-10-0242-7_8 

[16] Kordek, D. et al. (2017). The LMS Moodle and the Moodle Mobile Application in 

Educational Process of Biophysics. Mathematics, Information Technologies and Applied 

Sciences 2017, post-conference proceedings of extended versions of selected papers. Brno: 

University of Defence, 2017, p. 171-176. [Online]. [Retrieved 2018-03-10]. Available at: 

http://mitav.unob.cz/data/MITAV%202017%20Proceedings.pdf 

[17] Stuchlikova, L. et al. (2017). Engineering Education and Science & Technology 

Popularization Among Youngsters Supported by IT. Mathematics, Information 

Technologies and Applied Sciences 2017, post-conference proceedings of extended 

versions of selected papers. Brno: University of Defence, 2017, p. 226-234. [Online]. 

[Retrieved 2018-03-10]. Available at: http://mitav.unob.cz/data/MITAV%202017%20 

Proceedings.pdf 

31



COMPARISON BETWEEN GMRES AND THE METHOD OF CONJUGATE
GRADIENTS FOR THE NORMAL EQUATIONS IN AN EFFICIENCY OF

THEIR USE
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Abstract: We solve Ax = b, where A is an arbitrary real matrix. If A is a square invertible ma-
trix there is possible to apply the GMRES method which is considered to be the best method for
solving such problems. The use of the normal equations ATAx = AT b is an alternative approach
but it is not recommended. One of the reasons is the fact that cond2(ATA) = cond2(A)

2. But this
reason is possible to be partly eliminated by using of a better arithmetic. A priority of the normal
equations is the fact that the problem is always solvable even if A is a rectangular matrix. And it
is possible to apply the classical gradient methods to this problem. Some convergent properties of
both approaches are compared for various classes of matrices.

Keywords: systems of linear equations, normal equations, convergent properties, iterative meth-
ods.

INTRODUCTION

Consider a system of linear equations
Ax = b. (1)

This system is intended to be solved by methods of the Krylov type. If A is a symmetric positive
definite matrix then the method of the first priority to be applied is the method of conjugate gradi-
ents. If A is not such a matrix then we mostly apply the GMRES method or some of its variants.

In this paper we suggest the method of conjugate gradients applied to the system of normal equa-
tions as an alternative way to solve the problem (1). We show that in a series of cases it means
a competitive alternative. The system of normal equations

ATAx = AT b (2)

is always solvable and A is always symmetric positive semidefinite and if moreover A is invertible
then A is even definite. As a negative phenomenon there is considered the fact that

cond2(A
TA) = cond2(A)

2.

This fact can make, if using an insufficiently accurate arithmetic, the way through the normal
equations unacceptable. There is a positive fact that ATA is always symmetric positive definite
and some types of methods, for example Gauss-Seidel, the steepest descent or conjugate gradients,
converge to some solution of the problem. Matrices and their properties are in [1].
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1 ALGORITHMS AND THEIR FUNDAMENTAL PROPERTIES

The method of conjugate gradients was published for the first time in [3]. We introduce basic
algorithms which are taken from publication [4].

Algorithm 1 Conjugate Gradient
1. Compute r0 := b− Ax0, p0 := r0
2. For j = 0, 1, . . . , until convergence Do:
3. αj := (rj, rj)/(Apj, pj)
4. xj+1 := xj + αjpj
5. rj+1 := rj − αjApj
6. βj := (rj+1, rj+1)/(rj, rj)
7. pj+1 := rj+1 + βjpj
8. EndDo

We apply the Conjugate Gradient algorithm to the normal equations. The resulting algorithm for
computation is as follows.

Algorithm 2 Conjugate Gradient and Normal Equations
1. Compute r0 := b− Ax0, z0 := AT r0, p0 := z0
2. For j = 0, 1, . . . , until convergence Do:
3. wi := Api
4. αi := ||zi||2/||wi||22
5. xi+1 := xi + αipi
6. ri+1 := ri − αiwi

7. zi+1 = AT ri+1

8. βi := ||zi+1||22/||zi||22
9. pi+1 := zi+1 + βipi
10. EndDo

The basic GMRES algorithm can be described as follows.

Algorithm 3 GMRES
1. Compute r0 := b− Ax0, β := ||r0||2, v1 := r0/β

2. Define the (m+ 1)×m matrix H̃m = {hij}1≤i≤m+1,1≤j≤m. Set H̃m := 0.
3. For j = 1, 2, . . . ,m, Do:
4. Compute wj := Avj
5. For i = 1, . . . , j, Do:
6. hij := (wj, vi)
7. wj := wj − hijvi
8. EndDo
9. hj+1,j := ||wj||2. If hj+1,j = 0 set m := j and go to 12
10. vj+1 := wj/hj+1,j

11. EndDo
12. Compute ym the minimizer of ||βe1 − H̃my||2 and xm := x0 + Vmym.
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Notice that the Step 2 in the Algorithm 3 GMRES generates a matrix in an upper Hessenberg form.
The matrix has at least m2/2 nonzero elements (m is the number of steps in GMRES). With respect
to the fact that GMRES may need up to n steps (n is the size of matrix A, it is A ∈ Rn×n) and the
speed of convergence generally does not depend on the eigenvalues of the matrix A (se the result
in [2]), then the method becomes unusable for larger matrices.

2 BASIC CONVERGENCE ANALYSIS

Krylov subspaces are defined as

Kk(A, v) = span{v,Av,A2v, . . . , Akv}.

The significance of Krylov subspaces in connection with iterative methods consists in the following
property. It follows from the Cayley-Hamilton theorem that there exists a polynomial p such that

A−1 = p(A)

and thus a solution of the system
x∗ = A−1b = p(A)b

is a linear combination of vectors b, Ab,A2b, . . . , Akb (k = deg p). Then it is in a linear hull of
these vectors and then it is an element of Kk+1(A, b).

Consider an iterative method with an initial approximation x0. Then

r0 = b− Ax0

and thus
x∗ = A−1b ∈ x0 +Kk+1(A, r0).

For the m−th approximation we have

xm ∈ x0 +Km(A, r0)

and it means that
xm = x0 + pm(A)r0

(pm is a polynomial of degree m− 1 characterizing a method chosen).
Denote

εm = xm − x∗.

Then
xm − x∗ = x0 − x∗ + pm(A)(Ax

∗ − Ax0),

εm = ε0 + pm(A)A(−ε0).

In other words
εm = qm(A)ε0,

where
qm(x) = 1− xpm(x).
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Then
deg qm = m, qm(0) = 1.

We put
rm = −Aεm = −Aqm(A)ε0.

Then
||rm||2 = (−Aqm(A)ε0,−Aqm(A)ε0) = (Aqm(A)ε0, Aqm(A)ε0) (3)

and the GMRES method minimizes the value of ||rm||2 from (3).

The method of conjugate gradients with the normal equations minimizes the following functional

E(x) = xTAx− 2xT b,

usually called a functional of energy. If we express it in terms of normal equations (2), what is, in
fact, just the case of the conjugate gradients method applied to the normal equations, we get the
functional of energy in the form

E(x) = xTATAx− 2xTAT b. (4)

It means that the conjugate gradients with the normal equations minimize the functional E(x)
from (4) in a Krylov space

K̃(ATA, r̃0). (5)

As to the notation used we accept the following general convention.

Convention. Symbols with the tilde character, for example r̃0 in (5), are related to the conjugate
gradients method with the normal equations and symbols without the tilde relate to the GMRES
method. A Krylov space without a subscript is supposed to be with the subscript as the greatest as
possible. The convention for Krylov subspaces is also applied in (5).

If we use the notation
r = b− Ax,

we get

||r||2 = (r, r) = (b− Ax, b− Ax) = xTATAx− 2xTAT b+ (bT , b) = E(x) + const. (6)

We can see that the minimization of the energy functional E(x) for ATA from (4) is as the same
as the minimization of the residuum from (6). Both the methods minimize the same value but in
different spaces.

This is a distinction between the methods, the GMRES minimizes the expression in

Kn(A, r0),

while for the conjugate gradients the minimization is in

K̃n(A
TA, r̃0).
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Lemma 1 Let A be a symmetric matrix with a symmetric spectrum (it means that if Av = λv then
also Aw = −λw).
Then there exists an initial condition x0 (corresponding to GMRES) and x̃0 (corresponding to
conjugate gradients) such that

q2m = q̃m,

where q2m is the error polynomial corresponding to GMRES method and q̃m is the same for the
conjugate gradients method with the normal equations.

Proof: According to the matrix symmetry we have that A = AT . There exist λ1, . . . , λn ∈ R and
v1, . . . , vn ∈ Rn such that

Avi = λi vi, ||vi|| = 1, vTi vj = 0 for i ̸= j.

Put ε0 =
n∑

i=1

αi vi. Then in case of GMRES we get

rm = −Aqm(A) ε0 =
n∑

i=1

−αi λi qm(λi) vi (7)

and then

||rm||2 =
n∑

i=1

α2
i λ

2
i q

2
m(λi).

It holds that ATA = A2. Put ε̃0 =
n∑

i=1

βi vi. Then in case of the conjugate gradients method with

the normal equations we get

r̃m = −A q̃m(A
TA) ε̃0 =

n∑
i=1

−βi λi q̃m(λ
2
i ) vi.

Then we have

||r̃m||2 =
n∑

i=1

β2
i λ

2
i q̃m

2(λ2
i ).

We compare both methods with the same initial approximation, in particular we choose the zero
approximation. So that we have x0 = x̃0 and denoting r0 = b− Ax0 then there is always

K̃k(A
TA,A r0) = K̃k(A

2, A r0) ⊂⊂ K2k(A, r0)

(symbol ⊂⊂ stands for a subspace), we can see this situation in Example 1. We can write r0 as

a linear combination of eigenvectors, i. e. r0 =
n∑

i=1

γi vi. The coefficients are γi = −αi λi, see

expression rm in (7) for m = 0. If, moreover, for any pair i, k such that λi = −λk is αi = αk then
the polynomial qm for GMRES consists only of even powers. Then the minimum is searched for
only in K̃k(A

2, A r0), because the odd powers are out of use.
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Then the first and the second approximations have the same residuals, similarly the third and the
fourth approximations have the same residuals and all analogous next pairs have the same residuals.
Therefore the m−th step for the conjugate gradients method with the normal equations is equivalent
to the 2m−th step of GMRES. This means that

q̃m(λ
2
i ) = q 2m(λi)

and the lemma is proved.

From the algorithms presented above we can see that one iteration of the GMRES method consists
of one multiplication of a matrix and a vector but one iteration of the conjugate gradients method
applied to the normal equations consists of two such multiplications.

Then we can state that if we do not take into account the necessary process of making orthogonality
in case of GMRES, we can state that both the methods are equally laborious.

Next example shows a problem where the conjugate gradients method applied to the normal equa-
tions and GMRES coincide.

Example 1 Consider the problem (1) where

A =


1 0 0 0 0 0
0 −1 0 0 0 0
0 0 2 0 0 0
0 0 0 −2 0 0
0 0 0 0 4 0
0 0 0 0 0 −4

 , b =


1
1
1
1
1
1

 . (8)

Then the system of normal equations in (2) has the following matrix as the matrix of the system and
the following right hand side

ATA =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 4 0 0 0
0 0 0 4 0 0
0 0 0 0 16 0
0 0 0 0 0 16

 , AT b =


1
−1
2
−2
4
−4

 .

The computations are carried out with the same starting approximation for both methods, i. e.

x(0) = x̃(0) =


0
0
0
0
0
0

 . (9)
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Then the initial residuals are

r(0) =


1
1
1
1
1
1

 , r̃(0) =


1
−1
2
−2
4
−4

 .

The Krylov space in which the GMRES method looks for the approximations is

K6(A, r
(0)) = Span




1
1
1
1
1
1

 ,


1
−1
2
−2
4
−4

 ,


1
1
4
4
16
16

 ,


1
−1
8
−8
64
−64

 ,


1
1
16
16
256
256

 ,


1
−1
32
−32
1024
−1024




while the method of conjugate gradients with the normal equations looks for approximations in the
Krylov space

K̃3(A
TA, r̃(0)) = Span




1
−1
2
−2
4
−4

 ,


1
−1
8
−8
64
−64

 ,


1
−1
32
−32
1024
−1024



 .

Individual iterations for the GMRES method follows (the iterations are calculated directly from
illustrative reasons, not using the Algorithm 3)

x(1) = x(0) + α
(1)
1 r(0), r(1) = b− Ax(1) = b− A(x(0) + α

(1)
1 r(0)) = b− Ax(0) − α

(1)
1 Ar(0) =

= r(0) − α
(1)
1 Ar(0).

Then ∥∥r(1)∥∥2 =
(
r(1), r(1)

)
=
(
r(0) − α

(1)
1 Ar(0), r(0) − α

(1)
1 Ar(0)

)
=

=
(
r(0), r(0)

)
− 2α

(1)
1

(
r(0), Ar(0)

)
+
(
α
(1)
1

)2 (
Ar(0), Ar(0)

)
=

= 6− 0α
(1)
1 + 42

(
α
(1)
1

)2
.

Hence we get that α(1)
1 = 0 and then

x(1) = x(0),

that is

x(1) =


0
0
0
0
0
0

 .
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We get similarly that

x(2) = x(0) + α
(2)
1 r(0) + α

(2)
2 Ar(0).

r(2) = b− Ax(2) = b− A
(
x(0) + α

(2)
1 r(0) + α

(2)
2 Ar(0)

)
=

= b− Ax(0) − α
(2)
1 Ar(0) − α

(2)
2 A2r(0) = r(0) − α

(2)
1 Ar(0) − α

(2)
2 A2r(0).∥∥r(2)∥∥2 =

(
r(0) − α

(2)
1 Ar(0) − α

(2)
2 A2r(0), r(0) − α

(2)
1 Ar(0) − α

(2)
2 A2r(0)

)
=

=
(
r(0), r(0)

)
− 2

(
α
(2)
1 , α

(2)
2

)( (
r(0), Ar0)

)(
r(0), A2r(0)

) )+

+
(
α
(2)
1 , α

(2)
2

)( (
Ar(0), Ar(0)

) (
Ar(0), A2r(0)

)(
A2r(0), Ar(0)

) (
A2r(0), A2r(0)

) )( α
(2)
1

α
(2)
2

)
=

= 6− 2
(
α
(2)
1 , α

(2)
2

)( 0
42

)
+
(
α
(2)
1 , α

(2)
2

)( 42 0
0 546

)(
α
(2)
1

α
(2)
2

)
.

It assumes a minimum for α(2)
1 = 0 and α

(2)
2 =

42

546
and we get that

x(2) =


7.692307692307693e− 002
−7.692307692307693e− 002
1.538461538461539e− 001
−1.538461538461539e− 001
3.076923076923077e− 001
−3.076923076923077e− 001

 , r(2) =


9.230769230769231e− 001
9.230769230769231e− 001
6.923076923076923e− 001
6.923076923076923e− 001
−2.307692307692308e− 001
−2.307692307692308e− 001

 .

Similarly for further iterations. We get for x(3)

α(3) =

 0
7.6923e− 002

0

 , x(3) =


7.6923e− 002
−7.6923e− 002
1.5384− 001

−1.5384e− 001
3.0769e− 001
−3.0769e− 001

 , r(3) =


9.2307e− 001
9.2307e− 001
6.9230e− 001
6.9230e− 001
−2.3076e− 001
−2.3076e− 001

 .

If we compare the iterations x(2) and x(3) (the values are displayed in a different number of deci-
mal places but in fact the values are equal) we can see that these two successive iterations again
coincide, i. e.

x(3) = x(2).

We have for x(4) that

α(4) =


0

0.37942
0

−0.01985

 , x(4) =


0.35957
−0.35957
0.60007
−0.60007
0.24750
−0.24750

 , r(4) =


0.640427
0.640427
−0.200133
−0.200133
0.010007
0.010007


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and for x(5) that

α(5) =


0

0.37942
0

−0.01985
0

 , x(5) =


0.35957
−0.35957
0.60007
−0.60007
0.24750
−0.24750

 , r(5) =


0.640427
0.640427
−0.200133
−0.200133
0.010007
0.010007

 .

We can see again that
x(5) = x(4).

For x(6):

α(6) =


0

1.31250
0

−0.32812
0

0.01562

 , x(6) =


1
−1
0.5
−0.5
0.25
−0.25

 , r(6) =


0
0
0
0
0
0

 .

The residual r(6) contains all zeros and then x(6) is an exact solution of the problem.

Now we introduce calculations to the method of conjugate gradients applied to the normal equa-
tions. We apply the Algorithm 2 and get

x̃(1) =


0.076923
−0.076923
0.153846
−0.153846
0.307692
−0.307692

 , r̃(1) =


0.92308
0.92308
0.69231
0.69231
−0.23077
−0.23077

 ,

x̃(2) =


0.35957
−0.35957
0.60007
−0.60007
0.24750
−0.24750

 , r̃(2) =


0.640427
0.640427
−0.200133
−0.200133
0.010007
0.010007

 , x̃(3) =


1
−1
0.5
−0.5
0.25
−0.25

 , r̃(3) =


0
0
0
0
0
0

 .

The residual r̃(3) consists of all zeros and then x̃(3) is an exact solution which coincides with x(6).
Let us emphasize that the following equalities hold

x(2) = x̃(1), x(4) = x̃(2), x(6) = x̃(3)

and the fact corresponds to the situation in Lemma 1.

Lemma 2 Let A be a skew-symmetric matrix.
Then there exists an initial condition x0 (corresponding to GMRES) and x̃0 (corresponding to
conjugate gradients) such that

q2m = q̃m,
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where q2m is the error polynomial corresponding to GMRES method and q̃m is the same for the
conjugate gradients method with the normal equations.

Proof: The proof is analogous to Lemma 1, however, here we use the symmetry of spectrum but
with respect to the imaginary axis what follows from the skew-symmetry of the matrix.
Now we present a more general situation when the eigenvalues of the matrix A are neither real nor
purely imaginary.

Theorem 1 Let A be a matrix in the form

A = QTDQ, QTQ = I,

where D is a block diagonal matrix

D =


D1 0 0
0 D2 0

. . .
0 0 Dn

2

 . (10)

The blocks are 2× 2 matrices

Dj =

(
aj bj
−bj aj

)
.

Then the conjugate gradients method and the normal equations needs n/2 iterations to reach
the exact solution and GMRES needs n iterations for the same. It means that both the processes
consist of the same number of operations of the kind that a matrix is multiplied by a vector.

Proof: Let us determine the eigenvalues of the matrix A. The characteristic polynomial of a block
Dj is

(aj − λj)
2 + b2j = 0.

Then the eigenvalues of the matrix DJ are

λj,12 = aj ± i bj.

The eigenvalues of Dj are also eigenvalues of A. Then we can write

ATA = QTDTQ QTDQ = QTDTDQ.

The diagonal blocks of the matrix DTD are

DT
j Dj =

(
aj −bj
bj aj

)(
aj bj
−bj aj

)
=

(
a2j + b2j 0

0 a2j + b2j

)
.

Thus the matrix ATA has all eigenvalues double and the Theorem is proved.

Now we introduce an example which illustrates the results of Lemma 2 and Theorem 1.
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Example 2 Consider the problem (1) with the same right hand side b as in Example 1, see (8), but
with the following matrices A1, A2, A3 and A4 as the matrices of the system. Let

A1 =


1.00000 0.89443 2.92119 −2.82843 3.00000 −0.57735
2.68328 −2.20000 −0.65320 −1.26491 1.34164 −0.25820
1.46059 2.61279 −1.80000 −1.54919 1.64317 −0.31623
3.77124 1.68655 2.06559 3.66667 4.47834 0.40825
−1.66667 −0.74536 −0.91287 −5.42115 3.33333 0.57735
0.57735 0.25820 0.31623 −0.40825 −0.57735 2.00000

 , (11)

A2 =


0.33333 0.59628 2.55604 0.47140 −0.33333 −0.57735
2.38514 −2.33333 −0.81650 0.21082 −0.14907 −0.25820
1.09545 2.44949 −2.00000 0.25820 −0.18257 −0.31623
−0.47140 −0.21082 −0.25820 2.00000 −0.70711 0.40825
0.33333 0.14907 0.18257 0.70711 2.00000 0.57735
0.57735 0.25820 0.31623 −0.40825 −0.57735 2.00000

 , (12)

A3 =


0.00000 −1.78885 1.46059 0.94281 −0.66667 −0.57735
1.78885 0.00000 −3.26599 0.42164 −0.29814 −0.25820
−1.46059 3.26599 0.00000 0.51640 −0.36515 −0.31623
−0.94281 −0.42164 −0.51640 0.00000 −1.41421 0.40825
0.66667 0.29814 0.36515 1.41421 0.00000 0.57735
0.57735 0.25820 0.31623 −0.40825 −0.57735 0.00000

 , (13)

A4 =


1.00000 −1.78885 −0.36515 −2.35702 −0.33333 1.73205
0.00000 2.60000 −2.12289 −1.05409 −0.14907 0.77460
−1.82574 1.14310 2.40000 −1.29099 −0.18257 0.94868
0.47140 0.21082 0.25820 −1.33333 3.06413 −1.22474
−2.33333 −1.04350 −1.27802 −1.17851 −0.66667 −1.73205
−1.73205 −0.77460 −0.94868 1.22474 1.73205 2.00000

 . (14)

These matrices have different properties with respect to eigenvalues. Let us describe them.

Matrix A1 possesses three distinct pairs of complex conjugate eigenvalues.

Matrix A2 possesses a pair of double eigenvalues and another different pair of eigenvalues.

Matrix A3 is a skew-symmetric and possesses three pairs of purely imaginary eigenvalues.

Matrix A4 possesses three pairs of complex conjugate eigenvalues, generally different but all are
of the same absolute value.

All the matrices A1 to A4 are orthogonally similar to a block diagonal matrix D as in (10).
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Suppose again, as in Example 1, the same zero initial approximation, see (9). We compare the
residuals corresponding to six iterations of both methods individually for each of the matrices
A1 in (11), A2 in (12), A3 in (13) and A4 in (14). It is seen that the sixth iteration reaches an exact
solution.

The resulting residuals are collected in the following Tab. 1. The symbol GMR stands fo the GMRES
method and CGN for the method of conjugate gradients applied to the normal equations.

it A1-GMR A1-CGN A2-GMR A2-CGN A3-GMR A3-CGN A4-GMR A4-CGN
0 2.4495 2.4495 2.4495 2.4495 2.4495 2.4495 2.4495 2.4495
1 2.1846 1.0460 1.6687 0.79220 2.4495 1.4699 2.3482 0
2 1.2031 0.45759 1.6107 0 1.4699 0.70491 2.0872 0
3 1.1700 0 1.5178 0 1.4699 0 1.8930 0
4 1.1025 0 0 0 0.70491 0 0.71818 0
5 0.8003 0 0 0 0,70491 0 0.45197 0
6 0 0 0 0 0 0 0 0

Tab. 1. The process of convergence
Source: own

CONCLUSION

In this paper an alternative way for solving the systems of linear equations is proposed. The main
contribution of the paper is that there are shown situations where the method of conjugate gradients
applied to the system of normal equations is comparable to GMRES. Moreover, there are introduced
classes of problems where the application of normal equations is even better then GMRES. The
normal equations method is significantly easier then GMRES. It belongs to the significant added
values of the authors.
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GLOBAL SOLUTIONS TO MIXED-TYPE NONLINEAR FUNCTIONAL
DIFFERENTIAL EQUATIONS

Josef Diblı́k, Gabriela Vážanová
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Abstract: In this paper the criteria for existence of global solutions to nonlinear mixed-type func-
tional differential equations are formulated. To prove the criteria, Schauder-Tychonoff fixed point
theorem is used. A linear variant of derived results are given. Illustrative examples are considered
as well.
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INTRODUCTION

A lot of papers deal either with delayed differential equations or advanced differential equations.
We can refer, for example, to papers by Diblı́k [1], Diblı́k and Kúdelčı́ková [2], Pituk and Röst [6]
or Diblı́k and Koksch [3].

The topic of mixed-type functional differential equations has been discussed in the paper by Pinelas
[5]. She studies the asymptotic behavior of semi-global solutions to the linear scalar differential
equation. Her work is by its topic very close to our investigations.

In the paper the following notation will be used: For r > 0 let Cr := C ([0, r],Rn) be the Banach
space of continuous functions from the interval [0, r] to Rn equipped with the supremum norm

‖ψ‖r = sup
α∈[0,r]

|ψ (α) |, ψ ∈ C ([0, r],Rn) ,

where | · | is the maximum norm in Rn.

For a function y = y (t), continuous on an interval [t −D, t], t ∈ R, D > 0 we define a delayed-
type function yt ∈ CD by formula yt (τ) = y (t− τ) where τ ∈ (0, D]. Similarly, for a function
y = y (t), continuous on an interval [t, t + A], t ∈ R, A > 0, we define an advanced-type function
yt ∈ CA by formula yt (σ) = y (t+ σ) where σ ∈ (0, A]. Throughout the rest of the paper we
assume that D > 0 and A > 0 are fixed.

The following definitions of continuity and quasi-boundedness are motivated by definitions in [4].
We say that the functional f(t, yt, y

t) is continuous if it is continuous with respect to t on R for
each given continuous function y : R → Rn. The functional f : R × CD × CA → Rn is said to
be quasi-bounded if f is bounded on every set of the form [a, b] × C ([0, D],Ω1) × C ([0, A],Ω2)
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where a < b and Ω1, Ω2 are closed bounded sets of Rn.

By Rn
>0 (Rn

>0) we denote the set of all componentwise nonnegative (positive) vectors v in Rn, i.e.,
v = (v1, . . . , vn) with vi > 0 (vi > 0) for i = 1, . . . , n. For u, v ∈ Rn, we denote u 6 v if
v − u ∈ Rn

>0, u� v if v − u ∈ Rn
>0, and u < v if u 6 v and u 6= v. In order to avoid unnecessary

additional definitions, we use, whenever the meaning is not ambiguous, the same symbols Rn
>0

(Rn
>0) to denote relevant subsets of the set Rn.

In the paper we will consider a system of nonlinear mixed-type functional differential equations

ẏ (t) = f
(
t, yt, y

t
)
, (1)

where f : R × CD × CA → Rn is a continuous and quasi-bounded functional. A solution we
understand in the following meaning: A continuous function y : R→ Rn is a global solution of (1)
if it is continuously differentiable on R and satisfies (1) on R. The existence of global solutions to
mixed-type functional differential equations (1) will be proved. We provide an application of the
results on linear equations. Main results are Theorem 1 and Theorem 3.

1 EXISTENCE OF GLOBAL SOLUTIONS

To prove the existence of global solutions to differential equation (1), we assume that there exist
continuously differentiable functions β, γ : R→ Rn and a constant vector k ∈ Rn such that

β(−∞) = γ(−∞) = k, (2)

and for every t ∈ R

β(t) 6 γ(t), (3)
β′(t) 6 f(t, βt, β

t), (4)
γ′(t) > f(t, γt, γ

t). (5)

By S we denote the set of the functions y ∈ C(R,Rn) such that β(t) 6 y(t) 6 γ(t), that is,

S = {y ∈ C(R,Rn) : β(t) 6 y(t) 6 γ(t), t ∈ R}. (6)

In the following theorem, we will state sufficient conditions for the existence of global solutions to
equation (1).

Theorem 1. Let β, γ : R → Rn be continuously differentiable functions, satisfying (2)-(5) and the
conditions

f(t, βt, β
t) 6 f(t, yt, y

t), (7)
f(t, γt, γ

t) > f(t, yt, y
t), (8)

for t ∈ R and y ∈ S.
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Then, there exists a global solution y : R→ Rn satisfying y(−∞) = k and the inequality

β(t) 6 y(t) 6 γ(t) (9)

for t ∈ R.

Proof. Obviously, S is nonempty, closed, convex subset of C(R,Rn). We define an operator
T : S → C(R,Rn) by

(Ty)(t) = k +

∫ t

−∞
f (s, ys, y

s) ds, t ∈ R. (10)

The operator T is well-defined, the existence of the integral for y ∈ S is guaranteed by conditions
(2)-(8), since ∫ t

−∞
f (s, ys, y

s) ds >
∫ t

−∞
f(s, βs, β

s)ds >
∫ t

−∞
β′(s)ds

> β(t)− β(−∞) = β(t)− k
(11)

and ∫ t

−∞
f (s, ys, y

s) ds 6
∫ t

−∞
f(s, γs, γ

s)ds 6
∫ t

−∞
γ′(s)ds

6 γ(t)− γ(−∞) = γ(t)− k.
(12)

Moreover, the operator T is continuous. Now, we are going to prove that T (S) ⊂ S. Let y ∈ S.
The inequality (11) implies that

(Ty)(t) = k +

∫ t

−∞
f (s, ys, y

s) ds > k + β(t)− k = β(t) (13)

and inequality (12) implies

(Ty)(t) = k +

∫ t

−∞
f (s, ys, y

s) ds 6 k + γ(t)− k = γ(t). (14)

Further, we show that functions from T (S) are uniformly bounded and equicontinuous on each
compact subinterval of R. The equicontinuity follows from the relation

|(Ty)(t)− (Ty)(t′)| =
∣∣∣∣∫ t

t′
f (s, ys, y

s) ds

∣∣∣∣
and the fact that f is quasi-bounded. The uniform boundedness on a compact subinterval fol-
lows from inequalities (13) and (14). Therefore, by the Arzela-Ascoli theorem, the closure of
T (S) is compact in C(R,Rn) and according to Schauder-Tychonoff fixed-point theorem there ex-
ists an y ∈ S such that Ty = y. This fixed point y is a global solution of (1). Moreover, it satisfies
y(−∞) = k and the inequality (9), because y is a function from S.

Let us remark that our technique of the proof is similar to the one used, for example, in [2], [6].
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1.1 A linear system

In this section, we will show the applicability of Theorem 1. Let us consider a linear system

ẏ1(t) = (sin t+ 1)y2(t− 1),

ẏ2(t) = 0.1ecos ty1(t+ 0.25) + e−t
2−10 (15)

for t ∈ R. This is a variant of equation (1) with

n = 2,

f(t, yt, y
t) =

(
f1(t, yt, y

t), f2(t, yt, y
t)
)

=
(

(sin t+ 1)y2(t− 1), 0.1ecos ty1(t+ 0.25) + e−t
2−10

)
.

We will prove the existence of a global solution by Theorem 1. We need to show, that for suitable
functions β, γ will hold conditions (2)-(5) and (7), (8). Conditions (2) and (3) will be fulfilled for
k = 0 and

β = (β1, β2) =
(
−et, −et

)
,

γ = (γ1, γ2) =
(
e2t, e2t

)
.

Conditions (7), (8) hold, because of the linearity and the fact that the right-hand sides of (15) are
non-decreasing with respect to y2(t − 1) and y1(t + 0.25). Now, let us estimate the expressions
f(t, βt, β

t) and f(t, γt, γ
t) and verify that (4), (5) hold:

f1(t, β1t, β2t,β
t
1, β

t
2)

= (sin t+ 1)
(
−e(t−1)

)
> −2e−1et = −0.735759et > −et = β′1,

f2(t, β1t, β2t,β
t
1, β

t
2)

= 0.1ecos t
(
−e(t+0.25)

)
+ e−t

2−10 > −0.3e0.25et = −0.385208et > −et = β′2,

f1(t, γ1t, γ2t,γ
t
1, γ

t
2)

= (sin t+ 1)
(
e2(t−1)

)
6 2e−2e2t = 0.270671e2t 6 2e2t = γ′1,

f2(t, γ1t, γ2t,γ
t
1, γ

t
2)

= 0.1ecos t
(
e2(t+0.25)

)
+ e−t

2−10 6 0.3e0.5e2t + e2t = 1.494616e2t 6 2e2t = γ′2

for t ∈ R. We have verified all the assumptions from Theorem 1, therefore there exists a global
solution of system (15) y : R→ R2 satisfying y(−∞) = 0 and the inequality

−et 6 yi(t) 6 e2t

for t ∈ R, i = 1, 2.

1.2 Global solutions for a linear equation

In the following part we will consider a linear equation

ẏ(t) = c(t)y (t− τ(t)) + d(t)y (t+ σ(t)) + ω(t), t ∈ R, (16)

where c : R → R>0, d : R → R>0 are bounded continuous functions and τ : R → (0, D], σ : R →
(0, A], ω : R→ R are continuous functions.
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Theorem 2. Suppose that there exist continuously differentiable functions β, γ : R→ R satisfying
(2) and (3) and

β′(t) 6 c(t)β(t− τ(t)) + d(t)β(t+ σ(t)) + ω(t), (17)
γ′(t) > c(t)γ(t− τ(t)) + d(t)γ(t+ σ(t)) + ω(t) (18)

on R.

Then, there exists a global solution y(t) of (16) on R such that y(−∞) = k and

β(t) 6 y(t) 6 γ(t) (19)

for t ∈ R.

Proof. Because equation (16) is a special case of (1), we will apply Theorem 1 to prove the exis-
tence of global solution of (16). We assume that the conditions (2) and (3) hold, so the remaining
task is to verify conditions (4), (5), (7) and (8).

The inequalities (4) and (5) are equivalent to inequalities (17) and (18) if we put

f(t, yt, y
t) := c(t)y (t− τ(t)) + d(t)y (t+ σ(t)) + ω(t)

and consequently,

f(t, βt, β
t) = c(t)β (t− τ(t)) + d(t)β (t+ σ(t)) + ω(t),

f(t, γt, γ
t) = c(t)γ (t− τ(t)) + d(t)γ (t+ σ(t)) + ω(t).

Conditions (7) and (8) hold, because of the linearity of f(t, yt, y
t) and the fact that c(t) and d(t) are

nonnegative functions. Therefore, by Theorem 1, there exists a global solution of (16) satisfying
y(−∞) = k and the inequality (19).

1.2.1 A linear example

In this part, we consider a linear scalar equation

ẏ(t) = (20 + sin t) · y(t− 1) + (1 + cos t)e−1 · y(t+ 0.25) + 0.3e3t, t ∈ R. (20)

This is an equation of the type (16), where

c(t) = 20 + sin t, d(t) = (1 + cos t)e−1, ω(t) = 0.3e3t,

τ(t) = 1, σ(t) = 0.25.

If we find a continuously differentiable functions β(t) and γ(t) such that the conditions (2) and (3),
(17) and (18) hold on R, the existence of a global solution will be guaranteed by Theorem 2. Let
us set

β(t) = −e9t, γ(t) = e3t and k = 0.
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It is easy to see that the conditions (2) and (3) are fullfilled. Now, we will verify the inequalities
(17) and (18). For the calculations we used Wolfram Alpha software [7], available online. The
inequality (17) becomes

c(t)β (t− τ(t)) +d(t)β (t+ σ(t)) + ω(t)

= −(20 + sin t)e9(t−1) − (1 + cos t)e−1e9(t+0.25) + 0.3e3t

> −21e−9e9t − 2e−1e2.25e9t=̇− 6.98328e9t > −9e9t = β′(t)

for every t ∈ R and the inequality (18) may be estimated as

c(t)γ (t− τ(t)) +d(t)γ (t+ σ(t)) + ω(t)

= (20 + sin t)e3(t−1) + (1 + cos t)e−1e3(t+0.25) + 0.3e3t

6 21e−3e3t + 2e−1e0.75e3t + 0.3e3t=̇ 2.9e3t 6 3e3t = γ′(t)

for every t ∈ R as well.

Therefore, according to Theorem 2, the equation (20) has a global solution y(t) such that y(−∞) = 0
and

−e9t 6 y(t) 6 e3t

for t ∈ R.

2 A GENERALIZATION

In the first section we assumed that the functions β, γ are continuously differentiable functions on
R. This assumption restricts the applicability of Theorem 1. Below we will assume that the func-
tions β and γ are continuous on R and continuously differentiable almost everywhere.

Theorem 3. Let β, γ : R → Rn be continuous functions on R and continuously differentiable on
R \M, whereM = {ti ∈ R, i = 1, . . . , n, n ∈ N ∪ {∞}, t1 < t2 < · · · < tn}. Let there be a
constant k ∈ Rn such that

β(−∞) = γ(−∞) = k. (21)

Moreover, for every t ∈ R, y ∈ S it holds that

β(t) 6 γ(t), (22)
f(t, βt, β

t) 6 f(t, yt, y
t), (23)

f(t, γt, γ
t) > f(t, yt, y

t), (24)

and for t ∈ R \M hold

β′(t) 6 f(t, βt, β
t), (25)

γ′(t) > f(t, γt, γ
t). (26)
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Then, there exists a global solution y : R→ Rn satisfying y(−∞) = k and the inequality

β(t) 6 y(t) 6 γ(t)

for t ∈ R.

Proof. The scheme of the proof is similar to the proof of Theorem 1. As above, the set S given
by formula (6) is nonempty, closed, convex subset of C(R,Rn). We use the operator T : S →
C(R,Rn) defined by (10). The operator T is well-defined, the existence of the integral for y ∈ S
is guaranteed by conditions (21), (23)-(26). We show it: There are three cases which may occur:
t < t1, t ∈ [ti, ti + 1) for some index i or t > tn. Let t < t1, then the inequalities (11) and (12)
hold. In the case t ∈ [ti, ti+1) for some index i the integral may be estimated as∫ t

−∞
f (s, ys, y

s) ds >
∫ t1

−∞
f(s, βs, β

s)ds+
i−1∑
j=1

∫ tj+1

tj

f(s, βs, β
s)ds+

∫ t

ti

f(s, βs, β
s)ds

>
∫ t1

−∞
β′(s)ds+

i−1∑
j=1

∫ tj+1

tj

β′(s)ds+

∫ t

ti

β′(s)ds

= β(t1)− β(−∞) +
i−1∑
j=1

[β(tj+1)− β(tj)] + β(t)− β(ti)

= β(t)− k

(27)

and∫ t

−∞
f (s, ys, y

s) ds 6
∫ t1

−∞
f(s, γs, γ

s)ds+
i−1∑
j=1

∫ tj+1

tj

f(s, γs, γ
s)ds+

∫ t

ti

f(s, γs, γ
s)ds

6
∫ t2

−∞
γ′(s)ds+

i−1∑
j=1

∫ tj+1

tj

γ′(s)ds+

∫ t

ti

γ′(s)ds

= γ(t1)− γ(−∞) +
i−1∑
j=1

[γ(tj+1)− γ(tj)] + γ(t)− γ(ti)

= γ(t)− k.

(28)

If t > tn the process of estimating the integral will be similar to (27) and (28). The only change
will be replacing index i by index n and the result remains the same:∫ t

−∞
f (s, ys, y

s) ds > β(t)− k (29)

and ∫ t

−∞
f (s, ys, y

s) ds 6 γ(t)− k. (30)
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Moreover, the operator T is continuous. Now, we are going to prove that T (S) ⊂ S. According to
inequalities (11), (12), (27)-(30) for the operator T holds

(Ty)(t) = k +

∫ t

−∞
f (s, ys, y

s) ds > k + β(t)− k > β(t)

and also

(Ty)(t) = k +

∫ t

−∞
f (s, ys, y

s) ds 6 k + γ(t)− k 6 γ(t).

From this point the proof continues in the same way as the proof of Theorem 1.

2.0.2 A nonlinear example

In this part, we consider a nonlinear scalar equation

ẏ(t) = (20 + 0.001 sin t) · y(t− 1) + (1 + cos t)e−1 · y(t+ 0.25) + 0.001e3t+(2/π) arctan y(t) (31)

where t ∈ R. Let k = 0 and

β(t) =

{
−e9t for t ≤ 0,

−e4t for t > 0,
γ(t) =

{
e3t for t ≤ 0,

e4t for t > 0.

These chosen functions β, γ are continuous on R and continuously differentiable except the point
0. They also satisfy (21) and (22).

Functions arctan and e are increasing, therefore

e(2/π) arctanβ(t) 6 e(2/π) arctan y(t) 6 e(2/π) arctan γ(t)

for y ∈ S and t ∈ R. The remaining part of the right-hand side of the equation (31) is linear,
therefore inequalities (23), (24) hold for y ∈ S and t ∈ R.

Inequalities (25) and (26) have to be checked on four intervals:

t ∈ (−∞,−0.25], t ∈ (−0.25, 0], t ∈ (0, 1], t ∈ (1,∞).

In the first case when t ∈ (−∞,−0.25] the right-hand side of the inequality (25) may be estimated
in the following way:

f(t, βt, β
t) = (20 + 0.001 sin t) · (−e9(t−1)) + (1 + cos t)e−1 · (−e9(t+0.25)) + 0.001e3t+(2/π) arctan y(t)

> −20.001e9t−9 − 2e−1+9t+2.25

= e9t(−20.001e−9 − 2e1.25)=̇− 6.98e9t

> −9e9t = β′(t)

and the right-hand side of the inequality (26) as:

f(t, γt, γ
t) = (20 + 0.001 sin t) · e3(t−1) + (1 + cos t)e−1 · e3(t+0.25) + 0.001e3t+(2/π) arctan y(t)

6 20.001e3t−3 + 2e−1+3t+0.75 + 0.001e3t+1

6 e3t(20.001e−3 + 2e−0.25 + 0.001e)=̇2.56e3t

6 3e3t = γ′(t).
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Now, we will consider t from interval (−0.25, 0] and the estimations will be the following:

f(t, βt, β
t) = (20 + 0.001 sin t) ·

(
−e9(t−1)

)
+ (1 + cos t)e−1 ·

(
−e4(t+0.25)

)
+ 0.001e3t+(2/π) arctan y(t)

> −20.001e9t−9 − 2e−1+4t+1

= e9t
(
−20.001e−9 − 2e−5t

)
> e9t

(
−20.001e−9 − 2e−5·(−0.25)t

)
=̇− 6.98e9t

> −9e9t = β′(t)

and

f(t, γt, γ
t) = (20 + 0.001 sin t) · e3(t−1) + (1 + cos t)e−1 · e4(t+0.25) + 0.001e3t+(2/π) arctan y(t)

6 20.001e3t−3 + 2e−1+4t+1 + 0.001e3t+1

= e3t(20.001e−3 + 2et + 0.001e)

6 e3t(20.001e−3 + 2 + 0.001e)=̇2.998e3t

6 3e3t = γ′(t).

The third case considers t ∈ (0, 1], then:

f(t, βt, β
t) = (20 + 0.001 sin t) ·

(
−e9(t−1)

)
+ (1 + cos t)e−1 ·

(
−e4(t+0.25)

)
+ 0.001e3t+(2/π) arctan y(t)

> −20.001e9t−9 − 2e−1+4t+1

= e4t
(
−20.001e5t−9 − 2

)
> e4t

(
−20.001e−4 − 2

)
=̇− 2.37e4t

> −4e4t = β′(t)

and

f(t, γt, γ
t) = (20 + 0.001 sin t) · e3(t−1) + (1 + cos t)e−1 · e4(t+0.25) + 0.001e3t+(2/π) arctan y(t)

6 20.001e3t−3 + 2e−1+4t+1 + 0.001e3t+1

= e4t
(
20.001e−t−3 + 2 + 0.001e−t+1

)
6 e4t(20.001e−3 + 2 + 0.003)=̇3e4t

6 4e4t = γ′(t).

And finally, for t ∈ (1,∞) the following holds:

f(t, βt, β
t) = (20 + 0.001 sin t) ·

(
−e4(t−1)

)
+ (1 + cos t)e−1 ·

(
−e4(t+0.25)

)
+ 0.001e3t+(2/π) arctan y(t)

> e4t(−20.001e−4 − 2)=̇− 2.37e4t

> −4e4t = β′(t)

and

f(t, γt, γ
t) = (20 + 0.001 sin t) · e4(t−1) + (1 + cos t)e−1 · e4(t+0.25) + 0.001e3t+(2/π) arctan y(t)

6 e4t
(
20.001e−4 + 2 + 0.001e−t+1

)
6 e4t

(
20.001e−4 + 2 + 0.003

)
=̇2.37e4t

6 4e4t = γ′(t).
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According to Theorem 3, there exists a global solution y : R→ Rn satisfying y(−∞) = 0 and
the inequalities

−e9t 6 y(t) 6 e3t, t 6 0

−e4t 6 y(t) 6 e4t, t > 0.

2.1 A linear variant

Below we will formulate a consequence for linear equations. Let us consider the equation (16)
with coefficients mentioned in section 1.2, i.e. c : R→ R>0, d : R→ R>0 are bounded continuous
functions and τ : R→ (0, D], σ : R→ (0, A], ω : R→ R are continuous functions.

Theorem 4. Let β, γ : R → R be continuous functions on R and continuously differentiable on
R\M. Let there be a constant vector k ∈ R such that (21) holds. Moreover, suppose that for every
t ∈ R holds the inequality (22) and for R \M hold the inequalities (25) and (26).

Then, there exists a global solution y(t) of (16) such that y(−∞) = k and

β(t) 6 y(t) 6 γ(t) (32)

for t ∈ R.

Proof. The idea of the proof is similar to the proof of Theorem 2. We assume that conditions
(21), (22), (25) and (26) are fulfilled. The conditions (23) and (24) hold for a linear equation with
positive coefficients. Therefore, according to Theorem 3 there exists a global solution of (16) such
that y(−∞) = k and (32) hold.

CONCLUSION

In the paper, the existence of global solutions of advance-delay system (1) is proved. Simultane-
ously, upper and lower estimates of global solutions are derived. As a method of proof, Schauder-
Tychonoff fixed point theorem is applied. The obtained results are adapted to linear equations and
illustrated by examples.

To compare our result with other papers, we refer to [2], [5] and [6]. In [2] was proved the existence
of global solutions for advanced differential system. Pituk and Röst in [6] have proved the existence
of the solution on half-axis. We have used similar methods and proved the existence of solutions to
advance-delay systems on whole real line. In [5] Pinelas considers linear scalar equations.
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INTRODUCTION

The development and stability of systems depend on an understanding of the system, on the rich
experience and the interaction of system with the environment. Timely and current information can
allow the system to stabilize, adapt and restore the structure of the system or subsystem in the event
of possible violations.

Obviously, in developing solutions, management of complex systems always has to take into
account the uncertainty and risk, while allowing some regularities of the probabilistic nature in
accordance with the role of individual or mass of random phenomena. In our opinion, based on
the stochastic approach, we can study a number of aspects concerning the operation of the system
in different areas of activity. Our aim is to develop models of these activities using elements of
random processes.

Markov models are widely used in management. They form the basis of modern arsenal of
probabilistic methods in relation to the description of the state of the managed object and the
transition from one state to another at time with an acceptable degree of accuracy and reliability.

Thus, investigating stability of solutions of difference equations with random coefficients de-
pending on Markov or non-Markov, in particular semi-Markov, process represents a current prob-
lem.

The basis for most authors in the development of the stability of stochastic systems was the
theory of stability of a deterministic system developed by Lyapunov. However, the method of Lya-
punov functions is often difficult to apply to the study of the stability of non-stationary dynamic
systems. This can be explained by the fact that it is inconvenient to use the Lyapunov functions in
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the sense of the Lyapunov stability concept for this type of systems. The investigation of the Lya-
punov stability of differential systems with random parameters becomes even more complicated.

Our task is to obtain a reliable and simple method for studying stability of stochastic systems of
difference equations. In this paper, we propose the method of asymptotic expansions for construct-
ing the mathematical expectation of solutions to stochastic system of difference equations with a
small parameter. The method of matched asymptotic expansions and the representation of a solu-
tion in a convergent series were used, for example, in [5] and [7] respectively, to study deterministic
difference equations. The dynamic system and methods discussed in this paper are very well suited
for use as models for protecting information in cyberspace.

1 STATEMENT OF THE PROBLEM

Let (Ω, F , P ) be a probability space. The space Ω is called the sample space, F is the set of all
possible events (the σ-algebra), and P is some probability measure on Ω. On such a probability
space, we consider the initial value problem formulated for stochastic dynamic system with a small
parameter

Xn+1 = Xn + µA(n, ξn)Xn, n = 1, 2, . . . (1)
X0 = ϕ(ω), (2)

where A is an m × m matrix with random elements, ϕ : Ω → Rm. A sequence ξ = {ξi}∞i=1

of random variables ξi : Ω → S, i = 0, 1, 2, . . . is called a discrete-time stochastic chain on the
state space S. In our considerations, ξ is first a random chain with an infinite number of states,
then a random Markov chain taking a finite number of states θ1, θ2, . . . , θq with probabilities
pk(n) = P { ξn = θk}, k = 1, 2, . . . , q, n = 1, 2, . . . that satisfy the system of difference equations

pk(n+ 1) =

q∑
s=1

πksps(n), k = 1, 2, . . . , q (3)

where πjk(s, n) = P
(
ξn = θk

∣∣ ξs = θj
)
, k, j = 1, 2, . . . , q.

Denoting the transition matrix as Π =
(
πks(n)

)q
k,s=1

, (3) can be rewritten into the matrix form

P (n+ 1) = Π(n)P (n) (4)

where P (n) = (p1(n), p2(n), . . . , pq(n))T .

Definition 1 The m-dimensional random vector Xn, n = 1, 2, . . . is called a solution of the initial
value problem (1), (2) if Xn satisfies (1) and initial condition (2) in the sense of strong solution of
the initial Cauchy problem.

It is known that in general case, stochastic difference equations can not be solved in a closed
form with the exception of several classes of these equations. In a broader sense, by solving a
stochastic equation we mean finding the statistical characteristics of the solution. The main method
for solving these equations is via finding the probability distribution function as a function of time
using the equivalent Fokker-Planck equation, which tells us how the probability distribution func-
tion evolves in time. Moreover, solving these differential equations is not an easy task. Therefore,
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finding an explicit solution to a stochastic difference equation is possible only in some special cases.
There is, thus, a great need for a simple and straightforward presentation of the methods for obtain-
ing a solution to stochastic models. Another method, namely the method of moment equations for
the study of dynamical systems with random structure is used in [2, 3, 4, 6]. The stability of the
zero solution to stochastic differential systems with four-dimensional Brownian motion is studied,
for example in [1].

In this paper, a solution to (1) is assumed as a power series in small parameter µ, containing the
mathematical expectation of solution. Then we construct difference equations for the mathematical
expectation of a random solution to system (1) and we apply the solution of such a system in the
investigation of the stability.

2 MAIN RESULTS

2.1 Random chain with infinite number of states

First let ξ be some random chain with an infinite number of states. We find the random solution in
the form of an asymptotic series in powers of µ,

Xn = Yn +
∞∑
k=1

µkΦk(n, ξn)Yn, n = 1, 2, . . . (5)

where Yn = E(1){Xn} is the mathematical expectation ofXn, and Φk(n, ξn) are unknown matrices
satisfying assumption:

E(1){Φk(n, ξn)} = Θ, k = 1, 2, . . . , (6)

which means that their mathematical expectation is a zero matrix.
Next, we find the vector Yn also in the form of an asymptotic series in powers of µ,

Yn+1 = Yn +
∞∑
k=1

µkBk(n)Yn, n = 1, 2, . . . (7)

with unknown matrices Bk(n).
Substituting (5) and (7) into equation (1) we get the following system of equations

Yn +
∞∑
k=1

µkBk(n)Yn +
∞∑
k=1

µkΦk(n+ 1, ξn+1)

[
Yn +

∞∑
k=1

µkBk(n)Yn

]

= Yn +
∞∑
k=1

µkΦk(n, ξn)Yn + µA(n, ξn)

[
Yn +

∞∑
k=1

µkΦk(n, ξn)Yn

]
,

from where (
I +

∞∑
k=1

µkBk(n)

)(
I +

∞∑
k=1

µkΦk(n+ 1, ξn+1)

)

=

(
I +

∞∑
k=1

µkΦk(n, ξn)

)(
I + µA(n, ξn)

)
.

(8)
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Equating the coefficients at the same powers of µ in (8), we obtain system of linear matrix difference
equations,

Φ1(n+ 1, ξn+1)− Φ1(n, ξn) +B1(n) = A(n, ξn), (9)

Φk(n+ 1, ξn+1)− Φk(n, ξn) +Bk(n) (10)

= A(n, ξn)Φk−1(n, ξn)−
k−1∑
s=1

Φs(n+ 1, ξn+1)Bk−s(n), k = 2, 3, . . .

Application of mathematical expectation on equation (9), and taking into account (6), we can de-
termine the first unknown matrix,

B1(n) = E(1){A(n, ξn)}. (11)

In the same way, from equations (10) we obtain relations

Bk(n) = E(1){A(n, ξn)Φk−1(n, ξn)}, k = 2, 3, . . . . (12)

On the other hand, if we take into account Φ1(0, ξ0) = Θ, then from (9) follows

Φ1(n, ξn) =
n−1∑
s=1

(
A(s, ξs)−B1(s)

)
.

From where, and from (12) if k = 2, we get an expression for B2(n),

B2(n) = E(1)

{
A(n, ξn)

n−1∑
s=1

(
A(s, ξs)−B1(s)

)}
. (13)

Continuing similar calculations, we can obtain an expression for any matrix Bk(n), k = 3, 4, . . . .
In conclusion, we formulate the lemma.

Lemma 1 Let ξn be a random chain with an infinite number of states. Then the random solution to
stochastic dynamical system (1) with a small parameter µ can be found in the form of asymptotic
series (5), (7) where the matrices Φk(n, ξn), Bk(n), k = 1, 2, . . . are defined by (9), (10).

Remark 1 The previous considerations concerned any random process with an infinite number of
states. If we assume that the random chain ξn can take only the finite number of states θ1, θ2, . . . ,
θq, and the probabilities of the distribution of values θ1, θ2, . . . , θq are known:

pk(n), pkk1(n, n1), . . . , pkk1...kq(n, n1, . . . , nq),

then the matrices Bk(n), k = 1, 2 are defined as follows

B1(n) =

q∑
k=1

A(n, θk)pk(n),

B2(n) =

q∑
k=1

q∑
k=1

A(n, θk)
(
A(s, θ1)−B1(s)

)
pkk1(n, s).
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2.2 Markov chain with finite number of states

The calculations above can be simplified if we assume that the process ξ is a Markov chain for
which (3) and (4) are satisfied. It is easy to see, that from (4) the following is true:

P (s) = P
(
(s− 1) + 1

)
= Π(s− 1)P (s− 1)

= Π(s− 1)Π(s− 2)P (s− 2),

...

= Π(s− 1)Π(s− 2) · · ·Π
(
(s− (s− n)

)
P (n),

n, s = 1, 2, . . . , s > n.

Denote
M(s, n) = Π(s− 1)Π(s− 2), . . . ,Π(n), n, s = 1, 2, . . . , s > n,

M(n, n) = I

where I is the identity matrix.
It should be noted, if the transition matrix Π does not depend on n, then M(s, n) = Πs−n.
It is obvious that M(n + 1, n) = Π(n), and P (s) = M(s, n)P (n). Thus, for the elemets of the
matrix M(s, n) =

(
mjk(s, n)

)q
j,k=1

, n, s = 1, 2, . . . we have

mjk(s, n) = P
(
ξn = θk

∣∣ ξs = θj
)
, k, j = 1, 2, . . . , q.

Under assumpion n ≥ n1 ≥ n2 · · · ≥ ns, the joint distribution can be calculated as follows

pkk1...ks(n, n1, . . . , ns) = mkk1(n, n1)mk1k2(n1, n2) · · · mks−1s(s− 1, ns) pks(n, s)

As a result, the mathematical expectation of the functions a(n, ξn), n = 1, 2, . . . that are dependent
on the random chain ξn has the form

E(1) {a(n, ξn)a(n1, ξn1) · · · a(ns, ξns)}

=

q∑
kk1...ks=1

pkk1...ks(n, n1, . . . , ns) ak(n) ak1(n1) · · · aks(ns)

=

q∑
kk1...ks=1

ak(n)mkk1(n, n1) · · · aks(ns)mks−1ks(ns−1, ns)pks(ns)

(14)

where ak(n) = a(n, θk), k = 1, 2, . . . , q.
Denoting

A(n) = diag
(
a1(n), a2(n), . . . , aq(n)

)
C = (1, 1, . . . , 1), dimC = q,

formula (14) can be rewritten into the matrix form

E(1) {a(n, ξn)a(n1, ξn1) · · · a(ns, ξns)}
= CA(n)M(n, n1)A(n1) · · · M(ns−1, ns)A(ns)P (s).

(15)

The obtained result we formulate in the following Theorem
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Theorem 1 Let ξn be a random Markov chain with the finite number of states θ1, θ2, . . . , θq. Then
the mean solution to stochastic dynamical system (1) with a small parameter µ can be found in the
form of asymptotic series (5), (7) where the matrices Φk(n, ξn), Bk(n), k = 1, 2, . . . are defined
by (9), (10) and (15).

3 INVESTIGATION OF THE STABILITY OF THE MEAN SOLUTION OF THE LIN-
EAR FIRST-ORDER DIFFERENCE EQUATION

Consider the linear difference equation of the first order,

Xn+1 = Xn + µ a(ξn)Xn, n = 1, 2, . . . (16)

where the Markov chain ξ can take three possible states θ1, θ2, and θ3 with probabilities p1(n),
p2(n), and p3(n) that satisfy the system of difference equations (4) in the form

p1(n+ 1) =
(
1− (α + β)

)
p1(n) + δp2(n) + µp3(n),

p2(n+ 1) = αp1(n) +
(
1− (δ + γ)

)
p2(n) + νp3(n),

p3(n+ 1) = βp1(n) + γp2(n) +
(
1− (µ+ ν)

)
p3(n)

(17)

where α, β, γ, δ, µ, ν ∈ (0, 1]. Suppose that the initial probabilities

p1 =
α + β

w
, p2 =

γ + δ

w
, p3 =

ν + µ

w
, w = α + β + γ + δ + µ+ ν.

The matrix of this system, this is the transition matrix

Π =

1− α− β δ µ
α 1− δ − γ ν
β γ 1− µ− ν

 ,

does not depend on n, and has eigenvalues

λ1 = 1, λ2 =
1− w −

√
D

2
, λ3 =

1− w +
√
D

2

where
D = w2 − 4g,

g = αγ + αµ+ αν + βδ + βγ + βν + δµ+ δν + γµ.

Thus, the general solution to (17) can be written in the form

P (n) = c1κ1 + c2κ2

(
1− w −

√
D

2

)n

+ c3κ3

(
1− w +

√
D

2

)n

where κ1, κ2, κ3 ∈ R3. The n-th power of the matrix Π can be calculated ([37]) as:

Πn = z1 +

(
1− w −

√
D
)n

2n
z2 +

(
1− w +

√
D
)n

2n
z3
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where
z1 =

4

1 + 2w + 4g

(
A2 − (1− w)A

)
+

1− 2w + 4g

4
I,

z2 =
2(

1 + w +
√
D
)√

D

(
A2 − A(λ1 + λ2)I + λ1λ3I

)
z3 =

2(
− 1− w +

√
D
)√

D

(
A2 − A(λ1 + λ2)I + λ1λ2I

)
,

A = diag(a1, a2, a3).

Therefore,

Πn−1 + Πn−2 + · · · + Π = (n− 1)z1 +
1− w −

√
D

1 + w +
√
D
z2 +

1− w +
√
D

1 + w −
√
D
z3

= z1 + z2 + z3.

The solution to (16) we find in the form (5) where Yn is in the form (7), taking into account only
two terms of the power series. By Remark 1, using (15), and the fact that the matrix Π does not
depend on n, for bi(n), i = 1, 2, we obtain

b1(n) = a1p1 + a2p2 + a3p3 =
a1(α + β) + a2(γ + δ) + a3(µ+ ν)

w
,

b2(n) = CA
(
Πn−1 + Πn−2 + · · · + Π

)
(A− b1I)P.

In addition that CAz1(A− b1I)P = Θ, for b2 we have

b2 = lim
n→∞

b2(n) = A(z2 + z3)(A− b1I)P.

Thus,

b2 = (a1, a2, a3)
1

w2
[
(1 + w)2 −D

]2(4A2(w − 1)2 − 16− 4D

+ A
(1 + w)(3− 4w + w2 −D) + (1 + w)2 +D

0.25

− 4I(1 + w)
(
(1− w)2 −D

)r1 0 0
0 r2 0
0 0 r3

α + β
γ + δ
µ+ ν


where

r1 = a1(γ + δ + µ+ ν)− a2(γ + δ)− a3(µ+ ν),

r2 = a2(α + β + µ+ ν)− a1(α + β)− a3(µ+ ν),

r3 = a3(α + β + γ + δ)− a1(α + β)− a2(γ + δ).

The stability of the equation (16) can now be determined by the stability of the equation (7) which
has the form

yn+1 =
(
1 + µb1 + µ2b2 + o(µ3)

)
yn
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where o(·) is the little Laudau symbol.
Is is obvious, that the trivial solution to (16) is stable in the mean, if the inequality

1 + µb1 + µ2b2 + o(µ3) < 0

with sufficiently small µ.

4 CONCLUSION

Our approach to the modelling of information and communication network security differs from
the approach of many researches, which, as a rule, take into account of the maximum possible
number of factors affecting information about safety, that is they make basically a classification
architecture that helps organizations to implement their information security strategies.

As a mathematical model of the problems under discussion we use dynamical system of differ-
ence equations with a small parameter, where the coefficients depend on a random process. The
input parameters of the model can be the stochastic parameters of the threats, which are obtained
from the statistics of their occurrence and elimination. We can determine the domain of stability of
the information system, this is, if the system is ready to work in conditions of its security.
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Abstract: The paper deals with the construction of the motion equation of the section of the
one-dimensional linear continuum in the state of the spatial combined-gyratory vibration. The
basic decomposition of the general spatial motion of the rigid body in the center is used to
define the condition of the continuum element. The general spatial motion is replaced by an
irresistible shifting and relative spherical motion. The transverse oscillation of the continuum
in the field of centrifugal forces conveys a significant dependence of the numbers on the angular
velocity of the rotation of the system.
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INTRODUCTION

The presented equations of motion in state of spacial combined bending-gyratory vibration are
useful tool for description of all mechanisms with shafts (e.g. shafts in cars, gear pumps, ...). In
engineering constructions, the most endangered parts are rotating components.
Reliability of shaft endangers in particular two limit states. In the vicinity of resonance there
is an enormous increase in the amplitudes of the state variables and the achievement of the
yield strength of the material. These conditions often occur with the coupling shafts of Cardan
mechanisms. The torque is transmitted here over long distances. Shafts are long and slender
and are prone to transverse bending. The gearbox shafts are compact and operate at a sufficient
distance from the resonant area. In this case, they are threatened by fatigue fractures; they need
to be checked for safety to fatigue. A similar situation to gearboxes is with gear pump shafts.
The separated rotation of shaft is studied by authors of [1]. Lanzutti et al.[6] presents a failure
analysis of transmission gearbox (and its components) used in motor of a food centrifugal dryer
tested with a life test procedure developed by Electrolux Professional. Sinitsin and Shestakov
[7] present comprehensive analysis of the angular and linear accelerations of moving elements
(shafts, gears) by wireless acceleration sensor of moving elements.
The coupling problems between shafting torsional vibration and speed control system of diesel
engine is studied by Yibin et al. [8]. The torque is transmitted to relatively long distances
by shafts in engines. The combined motions are presented in papers [4] and [5]. Moreover
the both paper are devoted of spectral properties of vibrations. The presented paper focuses
on analytical construction of equations of motion of one-dimensional continuum in state of
combined motions, especially spacial combined bending-gyratory vibration. It is generalization
of the paper [5] to spacial case.
The paper is structured as follows. Firstly, we consider an element of one-dimensional contin-
uum (see Fig. 1) with the case of homogeneous field with constant annular cross-section and
we describe the force systems being in equilibrium.
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Secondly, we present the equations of motion in state of spacial combined bending-gyratory
vibration. The next part of our paper analyses results of the aforementioned research.

1 EQUILIBRIUM CONDITIONS AND INERTIAL EFFECTS ACTING ON ELEMENT
OF CONTINUUM

Consider an element of one-dimensional continuum (see Fig. 1, [5]) with the case of homo-
geneous field with constant annular cross-section. The element modeling a shaft has an inner
radius r1 and outer radius r2. The length is l.
The element (as homogeneous field) is further characterized by the stiffness parameter E (mod-
ule of elasticity in tension or compression) and the weight parameter (density) %. The theoretical
background of elasticity and strength is possible see to [3].

Fig. 1. The element of continuum
Source: own

The external forces acting on the element make state combined bending-gyratory vibration. In
that case, the continuum element making general spatial motion which is composed of three
simple movements - namely rotation, shift and spherical motion. Let’s obtain the equations of
motion from the equilibrium of the acting forces.
The force system acts on the length element dx of continuum (Fig. 1) which is imaginary
removed and released from the system. The inertial effects acting on the element can be in the
center of the element generally replaced by the inertial force having components Dy, Dz, the
moment of inertia couple having components MDy , MDz and shear force Qy, Qz.
The force systems being in equilibrium is expressed by formulas

Dy +
∂Qy

∂x
dx = 0, (1)

MDz +Qydx−
∂Mz

∂x
dx = 0,

Dz +
∂Qz

∂x
dx = 0,

MDy +
∂My

∂x
dx−Qzdx = 0.
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The inertial force of the sliding motion is obtained from the following formula

dD = −a dm, (2)

where dm = µ dx and µ is weight of the continuum length.
Dynamic models are formed by parts of the annular cross-section. The weight of the unit of
length is expressed directly from the area of annular cross-section in the following form

µ = π%
(
r22 − r21

)
. (3)

It should be emphasized that system (with respect coordinates x, y, z) rotates with constant
angular velocity (ω = const.). Assume that the constant angular velocity of system rotation
is respect with solving all the problem mentioned in this paper. If the results are given of
some quantities depending on the angular velocity ω then the angular velocity is understood as
a parameter. The acceleration of the center being achieved by time derivative of the position
vector

r(t) = (x(t), y(t), z(t)) . (4)

For simplification we use the notation r = (x, y, z).
The position vector is expressed in rotating system, however, it is necessary to differentiate
it in the “non-rotating” coordinates x̄, ȳ, z̄ (see Fig. 1). Once the implementation of relevant
derivatives the acceleration vector is obtained in the form

a =
(
0, ÿ − ω2y − 2ωż, z̈ − ω2z − 2ωẏ

)
. (5)

Substituting the (3) and (5) to (2) we obtain

dD = −µ dx
(
0, ÿ − ω2y − 2ωż, z̈ − ω2z − 2ωẏ

)
. (6)

Rotation of the element about the angles β, γ correspond to the continuum deformation in the
planes xz, xy. The angles β and γ are very small angles. In next, this fact allows to receive
strong simplification. For small angles the following equations are possible aplied

β = −∂z
∂x
, γ = −∂y

∂x
. (7)

The vectors of the inertial force Dx,z,y and of the moment of inertia couple MDx,z,y can be
rewritten into the form suitable for further solutions

dDx,z,y = −µ dx

(
0,

∂2y

∂t2
− ω2y − 2ω

∂z

∂t
,
∂2z

∂t2
− ω2z − 2ω

∂y

∂t

)
(8)

and

dMDx,z,y = −µ̄ dx

(
0,

∂3y

∂x∂t2
− ω2 ∂z

∂x
,

∂3z

∂x∂t2
− ω2 ∂y

∂x

)
, (9)

where µ is (3) and

µ̄ = π%
(
r42 − r41

)
(10)

is a constant of annular-cross section of the continuum element.
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2 EQUATIONS OF MOTION IN STATE OF SPACIAL COMBINED
BENDING-GYRATORY VIBRATIONS

The equations of motion are obtained using the D’Alembert principle to forces. The bending
moment vector of the elastic forces is given by relation

M = −E J

(
0,

∂2z

∂x2,

∂2y

∂x2

)
, (11)

where E is stiffness parameter (the module of elasticity in tension or compression) and

J =
π

4

(
r42 − r41

)
=

1

4%
µ̄ (12)

is a moment of an inertia - of an annular cross-section. As mentioned in the introduction to this
chapter, equations of motion are obtained from the equations (1) force systems equilibrium by
D’Alembert principle.
The equations of motion of the spacial combined bending-gyratory vibrations of the annular
cross-sections one-dimensional continuum are expressed by formulas

EJ
∂4y

∂x4
− µ̄

∂4y

∂x2∂t2
− µ̄ω2 ∂

2y

∂x2
+ µ

∂2y

∂t2
− 2µω

∂z

∂t
− µω2y = 0, (13)

and

EJ
∂4z

∂x4
− µ̄

∂4z

∂x2∂t2
− µ̄ω2 ∂

2z

∂x2
+ µ

∂2z

∂t2
+ 2µω

∂y

∂t
− µω2z = 0. (14)

Substituting the equalities (3), (10) and (12) to above equations of motion (13), (14) and modi-
fying it we obtain the final form of the equations of motion

∂4y

∂x4
− %

E

(
∂4y

∂x2∂t2
+ ω2 ∂

2y

∂x2

)
+

4%

E (r21 + r22)

(
∂2y

∂t2
− 2ω

∂z

∂t
− ω2y

)
= 0, (15)

and
∂4z

∂x4
− %

E

(
∂4z

∂x2∂t2
+ ω2 ∂

2z

∂x2

)
+

4%

E (r21 + r22)

(
∂2z

∂t2
− 2ω

∂y

∂t
− ω2z

)
= 0. (16)

Note that the analytical solutions of the equations (15) and (16) are real functions y, z of real
variables t, x.
With respect to the deflection of the continuum cross-section we can rewrite the formulas (15),
(16) in following way.
We calculate (15) + i(16) and we obtain the formula

∂4y

∂x4
+ i

∂4z

∂x4
− %

E

[(
∂4y

∂x2∂t2
+ i

∂4z

∂x2∂t2

)
+ ω2

(
∂2y

∂x2
+ i

∂2z

∂x2

)]
+ (17)

+
4%

E (r21 + r22)

[(
∂2y

∂t2
+ i

∂2z

∂t2

)
+ 2ω

(
−∂z
∂t

+ i
∂y

∂t

)
− ω2 (y + iz)

]
= 0.

The above formula (17) rewritten with notation: v = y + iz has form:

∂4v

∂x4
− %

E

(
∂4v

∂x2∂t2
+
ω2∂2v

∂x2

)
+

4ρ

E (r21 + r22)

(
∂2v

∂t2
− ω2v + 2iω

∂v

∂t

)
= 0 (18)

and the formula represents equation of motion in the state of spacial combined bending-gyratory
vibrations.
Note that v = y+ iz describes the deflection of the continuum cross-section at the coordinate x
at the general time t.
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CONCLUSION

The shafts have a lot of interesting technical properties and they are studied intensively from
different point of view. An interesting view at the behavior of shafts is situation when they
move. The movement of the shafts is described by equations of motion (i.e. partial differential
equations). It is possible study different motions of shafts (e.g. rotation, bending, shift, ...) and
their combinations.
More frequently separated movements of shaft are studied (see [1], [8]). The combination of
movements is presented less often because in the situation there is more complicated calculation
[5]. A procedure for vibration analysis of the device based on measured data in simulated
operating modes in mechanisms is studied in [2]. In [9], these new trends in torsional vibration
calculation for various vehicles are briefly described, with attention paid not only to practical
use, but above all to how and to what extent these themes should be presented to students.
In the paper [5] there is presented mathematical model of combined bending-gyratory vibra-
tion. Especially the paper is devoted a finite element for 1-dimensional linear continuum in the
state of combined bending-gyratory vibration. An application of the finite element method is
designed and tuned a method for calculating eigenvalues and vectors of a stepped shaft in the
state of combined bending-gyratory vibration.
In the paper the equations of motion of spacial combined bending-gyratory vibration of one-
dimensional linear continuum are presented. The model can be used both for the calculation
of natural frequencies and shape oscillations and for calculation of steady response in case of
oscillation enforced by discrete excitation in any cut of the continuum. The presented paper is
generalization of [5] to spacial vibrations. The problem is solved analytically. In [5] there is
used finite element method.
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Abstract: The article deals with teaching in the educational field of Information and 

Communication Technologies (ICT) at elementary school. It gives an insight into the 

important part of the knowledge and skills that the new generation will need in further 

education and training future profession. 

In the first part of the paper presents the educational concept of basic Czech education 

republics valid curricular documents and strategies of the Czech Republic's educational 

policy in the digital world with by formulating cross-sectional priorities. 

The second part of the article brings action research is basic research questions. To examine 

with the use of computer technology was attended by pupils from the 5th to 9th grade of 

elementary school, giving a view from the position of the target group. This is followed by a 

detailed evaluation of the research questions and an analysis of respondents' answers to the 

given issue. It deals with the results of the stated goals of the basic education and its 

effectiveness. It provides a preview and feedback on the teaching of Informatics at elementary 

school. Here is a view of another possible shift to the development of information thinking of 

pupils and the pitfalls associated with this phenomenon. It responds to the vision and strategy 

of digital education in the upcoming years in the context of this research. 

 

Keywords: computer science, information and communication technologies (ICT), 

qualitative research, elementary school, informational thinking, learning objectives, digital 

education. 

 

INTRODUCTION 

 

The environment in which future generations will live and educate fundamentally changes, 

particularly as a result of digital technology. With this is related the requirement for education 

of elementary school students. Information technology would thus have to break through the 

whole process of teaching at elementary school. It is therefore necessary to raise the 

information thinking of students and to extend their digital literacy and skills to a new 

dimension. The paper analyses the current state of the curriculum and provides an excursion 

of the current knowledge and skills of elementary school pupils in this field.  

 

1 THE BASIC EDUCATION CONCEPT 

 

1.1 Curricular documents 

Educational documents are obligatory document, according to which each school is governed 

by teaching. The state level in the curriculum system is the National Education Program and 

Framework Educational Programs (hereinafter RVP). The National Education Program 

defines initial education as a whole. RVP define obligatory education frameworks for its 

individual stages – pre-primary, primary and secondary education. The school level consists 

of school educational programs (ŠVP) that provide education at each school (RVP_ZV, 2017 

p. 5) [1]. ŠVP is created by each school according to the principles set out in relevant RVP. In 
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the system of basic education, according to the ŠVP, it is taught from the school year 

2007/2008. There has been no revision in the information and communication technology 

education field since the RVP ZV, although the professional public has repeatedly reminded 

this. There has been a situation where educational documents are obsolete; they do not reflect 

the level of development and the available digital technologies. 

In November 2014, the government supported the Digital Education Strategy by 2020 [2]. It 

was created on the proposal of the Ministry of Education, Youth and Sports. It responds to the 

continuous development of digital technologies and anticipates the gradual involvement of 

modern technologies in teaching. Currently comments are being made on the working papers 

for the variation proposals for updating the Framework Educational Programs in the field of 

ICT and (new) informatics. 

 

1.2 Strategy of Czech educational policy 

The Czech Republic's educational policy strategy in the digital world formulates cross-

sectional priorities: 

 to reduce inequalities in education; 

 to promote quality teaching and teachers as a key prerequisite; 

 to responsibly and effectively manage the education system. 

Within the strategy, measures are grouped into seven main lines of intervention to address the 

priorities set: 

1. Ensure non-discriminatory access to digital educational resources. 

2. Ensure conditions for the development of digital literacy and information literacy of 

students. 

Formulation of measures to achieve the objectives of the given intervention: ensure a system 

of regular innovations of the framework educational programs. Emphasis on digital 

technologies in the curriculum and their modernization. Modernize the ICT education area in 

the framework of educational programs, emphasize information thinking. Linking formal and 

non-formal learning to informative learning. 

3. Ensure conditions for the development of digital literacy and informative thinking of 

teachers. 

4. Ensure the building and renewal of the educational infrastructure. 

5. Promote innovative practices, monitoring, evaluating and disseminating their results. 

6. Ensure a system that encourages the development of schools in the area of digital 

technology integration into teaching and school life. 

7. Increase public understanding of the objectives and processes of integrating 

technology into education [2]. 

For the described action research and the identification of research issues is important the 

priority described in Point 2 – Ensuring the conditions for the development of digital literacy 

and information literacy of pupils. 

 

2  ACTION RESEARCH 

 

Terms of research are targeted to obtain the necessary information on the achieved digital 

education of students of elementary school with regard to current curricular documents. The 

research was carried out by students from 5th to 9th year. Research goal was to determine the 

achieved information profile of the students and his shift in digital literacy and information 

thinking. There was observed a glance with regard to individual years and the results were 

analysed with taking into account established research criteria. 
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2.1 Research category 

This action research can be classified into the following categories: 

Description: research describes phenomena and focuses on the questions: who, how, and pin. 

Research techniques are: statistical surveys, field observations, and case study that gives an 

image of specific similarities of situation, phenomenon or relationships. 

Research features: Applied research: answers questions that are of direct relevance to practice. 

It seeks solutions to practical problems. 

Research strategy used: Qualitative research strategy: a weakly structured research strategy 

focused on smaller samples; researcher has got close relationship to the subject´s, the attitude 

of the researcher is within the situation [3]. 

Basic approaches to qualitative research: Case study – Study of social groups (group of 

pupils). 

 

2.2 Practical part of the research 

For the above research, the basic steps are specified: 

Research area: achieved information profile of the students and its shift in digital literacy and 

information thinking in of each year. 

Research problem: What are the student's informational profile and its digital education and 

information thinking? 

Purpose of the research: To ensure the effectiveness of ICT teaching at primary school with 

regard to existing curricular documents. 

Importance for science: Research points to the feedback of teaching with using ICT at 

elementary school, not only in information and education areas communication technology. 

Important information will provide the result of research for a further digital education 

strategy at elementary school. Research is also important for creators and producers of 

modern teaching resources and aids suitable for teaching s using ICT. 

  

2.3 Basic research questions 

What is student´s relationship to subject Informatics due to each year? 

How does a student’s evaluate the use and application of acquired knowledge and skills from 

the subject Informatics in other subjects? 

How students assess their digital education and information thinking? 

How do students assess the current educational content of the subject Informatics for their 

future use? 

What is the connection between choosing a future profession and teaching s using ICT? 

  

2.4 Restriction of research 

The limitation and delimitation of the qualitative part of the research is given by subject of 

interest, subject of Informatics and other subjects, which are used in ICT at the 31st 

elementary school in Pilsen. All subjects taught correspond to ŠVP "School for the 21st 

Century", which is based on RVP ZV. Conclusions therefore concern the information profile 

of the students of this school. 

This results in the following research limitations: 

The study and its conclusions must be taken as local because the research is conducted on the 

students of a particular elementary school. This is also an advantage (the group of respondents 

is homogeneous and has the same conditions of education at the same school all the time) and 

a disadvantage (for a wider generalization it is a smaller research sample). The author is 

aware of all these restrictions they are taken into account when interpreting the results. 
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2.5 Implementation of research 

The research was carried out as follows: 

 analysis of the situation at selected elementary schools, analysis of the educational 

field Information and communication technology according to the RVP ZV a ŠVP 

31. elementary schools in Pilsen "School for the 21st Century" with regard to the 

content definition of the subject, the forms and methods used in teaching and the 

student's outcomes; analysis of other teaching subjects where ICT is used in teaching; 

 selecting appropriate research groups ; 

 compiling a questionnaire with questions that are in context with research problem; 

 addressing students (respondents), explaining the purpose of the research, obtaining 

consent research conditions, access to research questions on network drives; 

 collection, processing, completion and analysis of acquired data; 

 evaluation of research. 

Time research: research was carried out during the school year 2017/2018. 

 

2.6 Role of researcher in relation to terrain 

Researcher in terrain has due to terrain of the role of a dedicated researcher (a person who 

meets with his / her respondents outside research); freely according to [4]. 

 

3 THE SITUATION OF THE SCHOOL CONDUCTING RESEARCH 

 

3.1 Teaching with using ICT 

School Education Program 31st Elementary School v Pilsen is the subject of Informatics 

(educational area of Information and Communication Technologies) in the 5th and 6th grade. 

The subsidy is one hour a week. The subject is compulsory for all students. The subject 

Informatics enables students to achieve the basic level of information literacy. Students will 

acquire basic computer skills and learn to orient themselves in the world of information. 

From the 7th grade, one group of students is educated in a compulsory elective course of 

Informatics in a time subsidy of 3 hours a week. Other groups in this year have other optional 

subjects at the same time. Subject chooses from wide range of optional subjects. Teacher in 

these subjects try to make the most of ICT in teaching. In the 8th and 9th grades students use 

ICT in the subject of Art Education. This is mainly about vector and raster graphics 

processing, working with data communication etc. The subject is included in the Arts and 

Culture educational field. The thematic plans were adapted to correspond to the Art Education 

and corresponded with the RVP ZV. The subsidy is one hour a week in each grade. 

  

3.2 Material and technical equipment of the school 

The school is a full primary school with a capacity of 850 students. The teaching staff consists 

of a director, two representatives and 52 teachers, including all components of school 

counseling. For teaching with using ICT there are two large classroom equipped. Other two 

classrooms are fully equipped with iPads for each pupil. The school has modern measurement 

systems that students can use to teach natural science subjects. Processing systems use ICT. 

Classrooms have at their disposal (30, 30) computers from 2018. There is an interactive touch 

panel in a number of classes. The complete ICT services for the school are provided by the 

statutory city of Pilsen, which is the founder of the school. 

  

3.3 Professional qualifications of teachers schools from the use of ICT 

Teacher's professional competence can be defined as an "open and development-capable 

system of professional qualities that cover the full range of components of knowledge, skills, 
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experience, attitudes and personal prerequisites that are interdependent, and understood 

holistically." [5] 
From the point of view of professional competence, the teachers of the 31st elementary school 

in Plzeň are fully qualified in their educational field. In recent years, other educators have 

gone through a number of educational programs to use ICT in teaching. 

  

3.4 Digital literacy framework for school pupils 

Student knows security and ergonomics when working with PC and multimedia, is familiar 

with the history of computer technology, names hardware and software, works with operating 

systems, text editors, knows text typography, processes and creates vector files, creates 

animation, works with raster graphics and digital photos, orientated in printing technology, 

3D printing and creation of files for 3D printing, knows the principle of recording devices, 

can work with cloud storage, can get and work with digital image recording, working and 

organizes data in spreadsheets, works with Internet, digitized parts of the world cultural 

heritage, its conclusions can be processed and defended. Works with network drives, 

communicates via computer network, email. It uses school information systems. It respects 

the Copyright Act, knows the dangers and risks of social communication and can solve any 

pitfalls. It knows GDPR, it can identify which data it can publish. It is orientated in training 

programs suitable for individual subjects, can search in the databases of educational 

resources, can use the programs for their cognitive and educational process. It uses antivirus 

programs, knows the principles of computer virus prevention, and works securely with email 

communication and programs [6]. 

 

4 RESEARCH 

 

4.1 Research sample 

The sample was students from the 5th to the 9th grade of that school. Two classes took part in 

each year. In the 7th grade only one class. Teachers in Informatics were educated in these 

years, teaching ICT courses took place with teachers of the school. 

The survey was attended by 264 respondents. 

5th grade 64 pupils 

6th grade 65 pupils 

7th grade 22 pupils 

8th grade 61 pupils 

9th grade 52 pupils 

  

4.2 Questionnaire 

Research was created as a data source with an electronic questionnaire using the Google 

Forms application. In the questionnaire respondents responded electronically to the research 

questions. Questions in the questionnaire were chosen with respect to all ages. After the 

electronic questioning was ended, the pupils conducted a group discussion on the issue. 

Observations were recorded in the prepared form. 

The first round of questions deals with the student's personal relationship to the subject. The 

second round of questions deals with the use of acquired knowledge and skills in the subject 

of Informatics in other subjects from the student's point of view, the third round of questions 

records the digital education and the student's informal thinking, and the last round deals with 
the educational content of the subject. The conclusion is devoted to the future profession of 

the students and his perspective on the use and use of ICT 

 

 

74



5 EVALUATION OF QUESTIONS 

 

5.1 Relation of the subject of Informatics 

Question: What is your relationship to the subject of Informatics? 

Students have a positive relationship to the subject of Informatics. Evaluations were done as a 

mark in school. Of the 264 respondents, 46.6% of the students opted for a good grade, 39% of 

the students scored, 8.3% of the students, 4% of the students voted enough, 2% of the pupils 

voted poorly. No relationship has been recorded here in the evaluation of the question among 

the students of each year. 

Group conversation: during group conversation students positively evaluated the use of 

computer technology, valued other forms and methods of teaching. They highlighted 

particular electronic document processing, information gathering and communication with 

ICT. During a group interview, some people found that they answered inaccurately. Although 

the form was explained to them, they rated the answer, not as a mark in school but as a score. 

By doing so, the answers with the mark are devalued enough and insufficiently. 

Question: How many hours a week would you like to have Informatics? 
Students would increase lessons in 48, 4 % or retained in 43, 2 %. For the reduce were 8.4 % 

of students. No relationship has been recorded here in the evaluation of the question among 

the students of each year. 
Group conversation: during a group interview, students agreed on a higher hourly grant. They 

wondered at the expense of what subject they would classify. They declined increase of the 

increase the total weekly number of hours. They were thinking that the subject could be 

offered only to those interested after leaving the class. Students who have decided to reduce 

the number of hours did not engage in a discussion. 

 
5.2 Using acquired knowledge and skills from of the subject Informatics v other 

subjects 

Question: In which subject do you use computers or iPads? 
Students choose among subjects that are taught at school. Here is a direct link in the form of 

teachers in individual subjects and in each class. In the 5th grade, one teacher predominates. 

In particular, they use teaching programs in mathematics and Czech. Other uses pupils do not 

know. Higher grades use ICT by teachers. Statistically, most pupils report use in art 

education, mathematics and history. Other subject is behind. 

Group conversation: during a group interview, pupils reported cases of using computers and 

iPads. There was an obvious share in the teacher's personality and his erudition in the use of 

teaching programs and electronic resources. Teachers who lead students to use ICT in class 

are assessed as experienced and professionally trained. Students in the 8th grade and in the 

9th grade were able to differentiate between the complexities of the work done in the 

individual subjects using the ICT. From getting information and working with individual 

information, through work with tutorials to creating individual files using acquired 

knowledge. Most mentioned subjects were mathematics (GeoGebra, Wolfram Alpha) and art 

education (creation and modification of vector and raster files). 
Question: Which ability from ICT do you use in other subjects? 

This question had a free answer in the form of a text. Pupils in the 5th grade responded in 

general. They were unable to write a specific use. In the 6th and 7th year, they mainly chose 

to obtain and process information for papers in individual subjects. In the higher grades 

students were able to describe the specific use of programs. Repeatedly mentioned the ability 

to create and present their digital works. 
Group conversation: in the group interview, the answers were in line with the previous 

question. Once again, they know the usage depending on the teacher´s usage. The ability to 
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use presentational programs and present their work to classmates was a breakthrough in 

higher years. In the 9th year they mentioned the possibility of cloud storage and their use for 

their work. 
 
5.3 Digital education and the student's computer thinking 

Question: Do you use digital materials obtained on the Internet during your home 

preparation? 
Of the 264 respondents, 49.2% replied that they use digital materials for home preparation 

and can search for them. 13.2% said they did not use digital materials and could not find 

them. 25.4% say they use digital materials that the teacher sends them. 12.2% use digital 

materials made available to the parent. 
Group conversation: in the group interview students provided digital materials they used for 

their home preparation. Again, there was a difference in the grades. In general the students 

appreciated the teachers who provide them with educational resources in electronic form. A 

special section was the electronic textbooks available to students in some subjects. Here, 

again, the influence of the pedagogue, which uses them and taught the pupils with the 

electronic textbook, was again influenced. They also mentioned learning materials that they 

use with some teachers and which were created under an open Creative Commons license. 
Question in questionnaire: Can you create computer-based learning materials? 
Of the 264 respondents, 51.9% of the respondents answered that they were able to create 

learning materials, 43.2% said they never tried to create learning materials, and 4.9% did not 

know whether they could create learning materials. 
Group conversation: during the group conversation, the age of the pupils and their experience 

were again evident. Deeper inquiries have shown that learning materials can create students in 

higher grades. These are in particular digital materials created in presentation programs or 

materials using programs that have been taught by the teacher. In the lower grades, the 

interview revealed that some of the answers are distorted by over-confident pupils. 
Question in questionnaire: Can you present digital materials in front of a group? 
Of the 264 respondents, 47.3% of the respondents answered that they were able to present 

digital materials in front of the group, 41.6% said they never tried to present their work to the 

group and 10.8% of students could not present their work in front of the group. 
Group conversation: during the group conversation, the age of the students and their 

experience were again evident. The conclusions of the students were identical with the 

previous group interview. 
Question: Can you write in which area are computers dangerous? 
This question had a free answer in the form of a text. Pupils in the 5th grade were able to 

describe the risks they were familiar with during the course, but also within the Preventive 

School Program. Students from higher grades were able to describe specific threats, 

particularly cyberbullying, social networking threats, communications, passwords. They used 

the specific knowledge they gained in teaching in the subject of Informatics, but also in the 

Preventive School Schedule programs. 
Group conversation: during the group conversation, the age of the pupils and their experience 

were again evident. Students from higher talked about specific threats. They were interested 

in news in this area. The conversation became an exchange of practical information and 

experience. 
Question: What social networks do you use? 
161 pupils from 264 pupils use Facebook, 52 pupils from Twitter, 12 pupils Lidé.cz, 

Instagram 186 pupils, Google+ 115 pupils, 45 pupils no social network. 
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Group conversation: during the group conversation, the age of the pupils and their experience 

were again evident. The conversation once again revealed the knowledge of specific threats in 

communication, depending on the pupils' age. 
Question: Do you use cloud storage? 
Of the 264 respondents, 34.1% of pupils answered yes, 23.9% did not, and 42% did not know 

what cloud storage was. 
Group conversation: during the group conversation, the age of the pupils and their experience 

were again evident. Here, full-time tuition in the subject of Informatics was fully 

demonstrated. Pupils of higher age can use this technology; pupils of lower grades are not 

acquainted with this. 
  
5.4 Educational content of the subject 

Question in the questionnaire: From the following lesson, choose what you will need in the 

future. 
Students assessed that most would need internet and electronic communication, raster 

graphics and digital photography, vector graphics, text editor, typography of text writing, 

hardware and software knowledge. Students from higher have broadened their response to 

knowledge of information presentation and security, and working with data. The less 

important the students attached to the history of computer technology and the basics of 

programming. 
Group conversation: Again, the conversation reveals a connection between the students' age 

and the number of hours they have been taught. In lower grades there were majority of 

answers about working with educational programs. Higher grades demonstrate deeper 

knowledge and better communicate about the meaning and use of curriculum. 
  
5.5 Selection of the pupil's future profession 

Question in the questionnaire: What would you like to be in the future? 
In the free answer, the students used to designate different professions (from technician, 

doctor, lawyer, car mechanic, confectioner, etc.). Their future career orientation was largely 

unrelated to areas of ICT. 
Group conversation: in conversations, students, regardless of their age, are fully aware that 

their future profession will be closely related to using computer technology. They have found 

few professions where there is no representation of computer technology. They are fully 

aware of the sense of education as a preparation for a future profession. 
 

6 RESEARCH REPORT 

 

From the conclusions presented in the previous chapter, the following answers to the research 

questions can be identified: 

Students have a positive relationship with the subject of Informatics, regardless of the year 

they are studying. It evaluates positively other methods of teaching and using digital 

technologies. 

The use and application of the knowledge gained from the subject of Informatics in other 

subjects is directly dependent on the personality of the teacher of the subject. Research has 

clearly demonstrated that in subjects where the educator implements digital technology in 

school education, students are an active learner with the use of ICT. In this research question, 

the need to ensure the conditions for the development of digital literacy and the informational 

thinking of teachers was manifested the most. At the same time, it is necessary to regularly 

update the Framework Educational Programs (RVP) so that they are in line with the latest 
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scientific knowledge and developments in digital technology (not only in the subject of 

Informatics). 

The rating of digital education and information thinking depends on the age of the students 

and the number of hours worked by Informatics. Again, it corresponds directly to the previous 

research question and its conclusions. 

The current educational content of the subject Informatics for its future use can be seen in the 

practical application of vector and raster graphics, text editors and spreadsheets and in the 

presentation of their work and the possibilities of communication in the digital environment. 

The future profession of students does not affect the subject of Informatics in any way. 

Students perceive digital technology as a common part of its environment and are fully aware 

that their control is part of their education and a prerequisite for their future life. 

 

CONCLUSION 

 

The research report provides a unique view of the subject of Informatics at a primary school 

in the Czech Republic. It clearly defines students' view of teaching and their knowledge and 

skills. It establishes the role of the pedagogue in the educational process and the need for its 

development to achieve the quality of teaching at elementary school. The mechanisms and 

conditions for quality digital education of primary school students in the Czech Republic are 

clearly described. Therefore, it can be stated that the digital education strategy, which follows 

the Czech Republic's Education Policy Strategy by 2020, is a necessary support for digital 

education, which is becoming increasingly necessary. Especially in elementary schools, 

students need to develop in information thinking across all educational disciplines. A key 

player to this goal is not only technical equipment, but also a pedagogue with full 

interdependence across the curriculum. 
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Abstract: In the paper weak isometries in directed groups are investigated. A weak isometry f in a
directed group G is a mapping from G into G such that |f(x)− f(y)| = |x− y| for all x, y ∈ G. It
is shown that set of all weak isometries in a directed group G forms a group under the composition
of mappings and some results of K. L. N. Swamy concerning isometries in abelian lattice ordered
groups are extended to all directed groups. The question whether a directed group is determined
by its group of weak isometries is also considered. Further, it is proved that in any directed group
G such that if g′ ∈ G+, then g′ = 2g for some g ∈ G+, there exists a one-to-one correspondence
between stable weak isometries in G and direct decompositions of G with abelian second factor.

Keywords: directed group, intrinsic metric, weak isometry, direct decomposition.

INTRODUCTION

An isometry in an abelian lattice ordered group G was introduced by K. L. N. Swamy in [13] as a
bijection f : G→ G preserving the intrinsic metric d(x, y) = |x−y|, i. e. |x−y| = |f(x)−f(y)|
for each x, y ∈ G. W. C. Holland [1] considered whether other intrinsic metrics might be naturally
defined on a lattice ordered group. Isometries in non-abelian lattice ordered groups were studied
by J. Jakubı́k [2, 3]. The mappings preserving the intrinsic metric d(x, y) in a representable lattice
ordered group were dealt with by J. Jakubı́k in [4]. J. Rachůnek [12] generalized the notions of
an intrinsic metric and of an isometry to any partially ordered group and investigated isometries in
a 2-isolated abelian Riesz group. Isometries in Riesz groups and distributive multilattice ordered
groups were examined by the author in [5, 6, 8, 9]. Weak isometries in directed groups were studied
in [7]. Partially ordered semigroups were used for constructions of EL-semihypergroups in [11].

1 PRELIMINARIES

We review some notions and notations used in the paper. Let G be a partially ordered group
(notation po-group). The group operation will be written additively.

If M is a subset of G, then we denote by U(M) and L(M) the set of all upper bounds and
the set of all lower bounds of the set M in G, respectively. If a1, . . . , an ∈ G, then we write
U(a1, . . . , an) and L(a1, . . . , an) instead of U({a1, . . . , an}) and L({a1, . . . , an}), respectively.

If for x, y ∈ G there exists the least upper bound (greatest lower bound) of the set {x, y} in G,
then it will be denoted by x ∨ y (x ∧ y).

If for elements x and y in G there exists x ∨ y in G, then there also exist x ∧ y, (−x) ∨
(−y), (−x) ∧ (−y) in G and (x ∨ y) + c = (x+ c) ∨ (y + c), c+ (x ∨ y) = (c+ x) ∨ (c+ y) for
each c ∈ G. Moreover, −(x ∨ y) = (−x) ∧ (−y).
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The dual assertions are valid, too.
The absolute value |x| of an element x of a po-group G is defined by |x| = U(x, −x).
If A is a subset of G, then A+ = {x ∈ A;x ≥ 0}.
The set of all subsets of G will be denoted by expG.
A po-group G is called directed if U(x, y) 6= ∅ and L(x, y) 6= ∅ for every x, y ∈ G.
A po-group G is called 2-isolated if 2a ≥ 0 implies a ≥ 0 for every a ∈ G.
K. L. N. Swamy [13] showed that in any abelian lattice ordered group H the mapping d :

H ×H → H defined by d(x, y) = |x − y| is an intrinsic metric (or an autometrization ) in H , i.
e. it satisfies the formal properties of a distance function:
(M1) d(x, y) ≥ 0 with equality if and only if x = y (positive definiteness),
(M2) d(x, y) = d(y, x) (symmetry),
(M3) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

A simple example of an intrinsic metric is well known metric d(x, y) = |x− y| in the additive
group R of all real numbers with the natural order.

J. Rachůnek [12] defined an intrinsic metric on G as a mapping d : G×G → expG satisfying
the following conditions for every x, y, z ∈ G :
(M1) d(x, y) ⊆ U(0) and d(x, y) = U(0) if and only if x = y,
(M2) d(x, y) = d(y, x),
(M3) d(x, y) ⊇ d(x, z) + d(z, y)
and showed that in any 2-isolated abelian Riesz group H the mapping d : H × H → expH
defined by d(x, y) = |x− y| is an intrinsic metric in H.

The conditions (M1) - (M3) concerning a po-group G are analogous to the above mentioned
conditions (M1) - (M3) for an abelian lattice ordered group H .

In [10] it was shown that d(x, y) = |x − y| is an intrinsic metric in any 2-isolated abelian
po-group.

A mapping f : G → G is called a weak isometry in G if |x− y| = |f(x)− f(y)| for every
x, y ∈ G.

A weak isometry f is called a stable weak isometry, if f(0) = 0.
A weak isometry f is called an isometry, if f is a bijection.

If f : G → G and g : G → G, then the mapping f ◦ g : G → G defined by (f ◦ g)(x) =
g(f(x)) for each x ∈ G is called a composition of mappings f and g.

A mapping t : G → G defined by t(x) = x + c for each x ∈ G, where c ∈ G, is called a
right translation by c in G and will be denoted by tc. The set of all right translations in G will be
denoted by T (G). If tb, tc ∈ T (G), then tb ◦ tc = tb+c.

If f is a weak isometry in G, then the mapping g defined by g(x) = f(x) − f(0) for each
x ∈ G is a stable weak isometry in G. The mapping g is called a stable weak isometry associated
with the weak isometry f and will be denoted by f̄ . Thus f(x) = f̄(x) + f(0) for each x ∈ G.
If we put t(x) = x+ f(0) for each x ∈ G, then f(x) = t(f̄(x)) for each x ∈ G.

Hence each weak isometry in G can be represented as a composition of a stable weak isometry
and a right translation. Thus for finding of all weak isometries it suffices to determine all stable
weak isometries. Every right translation is an isometry.
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A mapping g of a set M into M is called an involutory mapping (or an involution) if g(g(x)) =
x for every x ∈M. We will write g2(x) instead of g(g(x)).

Let H1 and H2 be groups and partially ordered sets. Let the mapping ϕ : H1 → H2 be a
bijection.
(i) If x ≤ y ⇔ ϕ(x) ≤ ϕ(y) for each x, y ∈ H1, then ϕ is called an order isomorphism (shortly
o-isomorphism) of H1 and H2.
(ii) If ϕ(x + y) = ϕ(x) + ϕ(y) for each x, y ∈ H1, then ϕ is called a group isomorphism (shortly
g-isomorphism) of H1 and H2.
(iii) If ϕ is an o-isomorphism and also a g-isomorphism of H1 and H2, then ϕ is called an og-
isomorphism.

We will need the following assertions and we will often apply them without special references.

A1. Any weak isometry in a directed group is a bijection [7, Corollary 5].
(Hence the notions of an isometry and of a weak isometry coincide in any directed group.)

A2. Any stable weak isometry f in a directed group H is an involutory group homomorphism and
f(x) + x = x+ f(x) for each x ∈ H [7, Theorems 3 and 4].

2 PROPERTIES OF WEAK ISOMETRIES IN DIRECTED GROUPS

Theorem 1 The set I(G) of all weak isometries in a directed group G is a group under the compo-
sition of mappings. The set SI(G) of all stable weak isometries in G and the set T (G) of all right
translations in G are subgroups of I(G).

Proof. Let f be a weak isometry in G. Since f is a bijection, there exists an inverse mapping f−1

of the mapping f in G. Let x, y ∈ G. Then |f−1(x) − f−1(y)| = |f(f−1(x)) − f(f−1(y))| =
|x − y|. Thus f−1 is a weak isometry in G. Let h and g be weak isometries in G, z, t ∈ G. Then
|(g ◦h)(z)− (g ◦h)(t)| = |h(g(z))−h(g(t))| = |g(z)− g(t)| = |z− t|. Hence the composition of
weak isometries h and g is also a weak isometry inG. Therefore the set I(G) of all weak isometries
in a directed group G is a group under the composition of mappings. Clearly, SI(G) and T (G) are
subgroups of I(G).

Remark. The set I(G) of all weak isometries in a directed group G can be partially ordered in a
natural manner by letting for f, g ∈ I(G), f ≤ g to mean f(x) ≤ g(x) for each x ∈ G.

Theorem 2 Let G be a directed group and f a weak isometry in G. Then the following conditions
are equivalent:
(i) f is order preserving (i. e. x ≤ y ⇒ f(x) ≤ f(y)),
(ii) f̄ is order preserving,
(iii) f̄(x) = x for each x ∈ G.

Proof. (i) ⇒ (ii). Let f is order preserving. Let y, z ∈ G, y ≤ z. Then f(y) ≤ f(z) and hence
f̄(y) = f(y)− f(0) ≤ f(z)− f(0) = f̄(z). Thus f̄ is order preserving.
(ii) ⇒ (i). We assume now that f̄ is order preserving, y, z ∈ G, y ≤ z. Thus f̄(y) ≤ f̄(z). This
implies f(y) = f̄(y) + f(0) ≤ f̄(z) + f(0) = f(z). Hence f is order preserving.
(ii)⇒ (iii). Let f̄ is order preserving. Let t ∈ G+. Then from |t − 0| = |f̄(t) − f̄(0)| = |f̄(t)| it
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follows that f̄(t) ≤ t. Thus 0 ≤ −f̄(t) + t. This yields 0 = f̄(0) ≤ f̄(−f̄(t) + t) = −(f̄)2(t) +
f̄(t) = −t+ f̄(t) = −(−f̄(t) + t). Therefore −f̄(t) + t = 0. Hence f̄(t) = t.

Now, let x ∈ G. Since G is a directed group, x = x1 − x2 for some x1, x2 ∈ G+. Then
f(x) = f(x1 − x2) = f(x1)− f(x2) = x1 − x2 = x.
(iii)⇒ (ii). It is obvious.

Corollary 1 A weak isometry f in a directed group G is order preserving if and only if f(x) =
x+ f(0) for each x ∈ G (i. e. f is a translation).

Theorem 3 Let G be a directed group and f a weak isometry in G. Then the following conditions
are equivalent:
(i) f is order reversing (i. e. x ≤ y ⇒ f(x) ≥ f(y)),
(ii) f̄ is order reversing,
(iii) f̄(x) = −x for each x ∈ G.

Proof. (i) ⇒ (ii). Let y, z ∈ G, y ≤ z. Let f is order reversing. Then f(y) ≥ f(z) and hence
f̄(y) = f(y)− f(0) ≥ f(z)− f(0) = f̄(z). Thus f̄ is order reversing.
(ii) ⇒ (i). We assume now that f̄ is order reversing, y, z ∈ G, y ≤ z. Thus f̄(y) ≥ f̄(z). This
implies f(y) = f̄(y) + f(0) ≥ f̄(z) + f(0) = f(z). Hence f is order reversing.
(ii)⇒ (iii). Let f̄ is order reversing. Let t ∈ G+. Then from |t − 0| = |f̄(t) − f̄(0)| = |f̄(t)| it
follows that−f̄(t) ≤ t. Thus 0 ≤ f̄(t) + t. This yields 0 = f̄(0) ≥ f̄(f̄(t) + t) = (f̄)2(t) + f̄(t) =
t+ f̄(t) = f̄(t) + t. Hence f̄(t) + t = 0. Therefore f̄(t) = −t.

Now, let x ∈ G. Since G is a directed group, x = x1 − x2 for some x1, x2 ∈ G+. Thus
f̄(x1 + x2) = f̄(x1) + f̄(x2) = −x1 − x2 ≤ 0. Then from |(x1 + x2)− 0| = |f̄(x1 + x2)− f̄(0)|
we obtain f̄(x1 +x2) = −x2−x1. Thus−x1−x2 = −x2−x1 and hence x1 +x2 = x2 +x1. Then
we have f̄(x) = f̄(x1 − x2) = f̄(x1)− f̄(x2) = −x1 + x2 = −(−x2 + x1) = −(x1 − x2) = −x.
(iii)⇒ (ii). It is obvious.

Corollary 2 A weak isometry f in a directed group G is order reversing if and only if f(x) =
−x+ f(0) for each x ∈ G.

Corollaries 1 and 2 extend results of K. L. N. Swamy concerning isometries in abelian lattice
ordered groups [13, Theorems 2 and 3] to all directed groups.

Theorem 4 Let G be a directed group and f a weak isometry in G. Then f 2 is a translation such
that f 2(x) = x+ f 2(0) for each x ∈ G.

Proof. Let f be a weak isometry in G, x ∈ G. Then f(x) = t(f̄(x)), where t is a translation in
G defined by t(x) = x + f(0) for each x ∈ G. Since f̄ is an involutory group homomorphism,
we have f 2(x) = f(t(f̄(x))) = f(f̄(x) + f(0)) = t(f̄(f̄(x) + f(0))) = t((f̄)2(x) + f̄(f(0))) =
(f̄)2(x) + f̄(f(0)) + f(0) = x+ f(f(0))− f(0) + f(0) = x+ f 2(0).

Theorem 4 generalizes Corollary 1 of K. L. N. Swamy [13].

Theorem 5 Let H be a non-void subset of a directed group G and f a stable weak isometry in G.
Then H is a subgroup of G if and only if f(H) is a subgroup of G.
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Proof. Let H be a subgroup of G. Since f is a group homomorphism, f(H) is also a subgroup of
G. Assume now that f(H) is a subgroup of G. Since f is an involution, we have f(f(H)) = H.
Hence H is a subgroup of G.

Theorem 6 Let G and H be directed groups. Let ϕ : G→ H be an og-isomorphism of G and H.
(i) Let f be a weak isometry in G. Then the mapping fϕ : H → H such that fϕ(ϕ(x)) = ϕ(f(x))
for each x ∈ G is a weak isometry in H.
(ii) The mapping θ : I(G)→ I(H) defined by θ(f) = fϕ for each f ∈ I(G), where fϕ is as in (i),
is an og-isomorphism of I(G) and I(G) such that θ(T (G)) = T (H).

Proof. (i) First we prove that ϕ(|a− b|) = |ϕ(a)− ϕ(b)| for each a, b ∈ G.
Let c ∈ |a − b|. Thus c ≥ a − b, c ≥ b − a and hence ϕ(c) ≥ ϕ(a − b) = ϕ(a) − ϕ(b),
ϕ(c) ≥ ϕ(b−a) = ϕ(b)−ϕ(a). This implies ϕ(c) ∈ U(ϕ(a)−ϕ(b), ϕ(b)−ϕ(a)) = |ϕ(a)−ϕ(b)|.
Therefore ϕ(|a− b|) ⊆ |ϕ(a)− ϕ(b)|.

Let d′ ∈ |ϕ(a) − ϕ(b)|. Then d′ = ϕ(d) for some d ∈ G. Thus ϕ(d) ≥ ϕ(a) − ϕ(b) =
ϕ(a − b), ϕ(d) ≥ ϕ(b) − ϕ(a) = ϕ(b − a). From this follows that d ≥ a − b, d ≥ b − a. Hence
d ∈ |a− b|. Therefore |ϕ(a)− ϕ(b)| ⊆ ϕ(|a− b|).

Let x′, y′ ∈ H. Thus ϕ(x) = x′, ϕ(y) = y′ for some x, y ∈ G. Then |fϕ(x′) − fϕ(y′)| =
|ϕ(f(x))− ϕ(f(y))| = ϕ(|f(x)− f(y)|) = ϕ(|x− y|) = |ϕ(x)− ϕ(y)| = |x′ − y′|. Therefore fϕ

is a weak isometry in H.
(ii) First we prove that θ is a bijection. Let g, h ∈ I(G), θ(g) = θ(h). Thus gϕ(z) = hϕ(z) for any
z ∈ H.

Let x ∈ G. Then ϕ(x) ∈ H and hence gϕ(ϕ(x)) = hϕ(ϕ(x)). This yields ϕ(g(x)) = ϕ(h(x)).
From this follows that g(x) = h(x). Therefore g = h.

It is easy to see that the mapping ϕ−1 is an og-isomorphism of H and G.
Let t ∈ I(H). In view of (i) we have that the mapping u = tϕ

−1 is a weak isometry in G. Let
x ∈ G. Then uϕ(ϕ(x)) = ϕ(u(x)) = ϕ(tϕ

−1
(x)) = ϕ(tϕ

−1
(ϕ−1(ϕ(x)))) = ϕ(ϕ−1(t(ϕ(x)))) =

t(ϕ(x)). Thus t = uϕ = θ(u). Hence θ is a bijection.
Let g1, g2 ∈ I(G), g1 ≤ g2. Let d ∈ H. Then g1(ϕ

−1(d) ≤ g2(ϕ
−1(d). Hence gϕ1 (d) =

gϕ1 (ϕ(ϕ−1(d))) = ϕ(g1(ϕ
−1(d))) ≤ ϕ(g2(ϕ

−1(d))) = gϕ2 (ϕ(ϕ−1(d))) = gϕ2 (d). Therefore θ(g1) =
gϕ1 ≤ gϕ2 = θ(g2).

Analogously we can prove that if h1, h2 ∈ I(G) and θ(h1) ≤ θ(h2), then h1 ≤ h2.
Now assume that g, h ∈ I(G), x ∈ G. Then we have θ(g◦h)(ϕ(x)) = (g◦h)ϕ(ϕ(x)) = ϕ((g◦

h)(x)) = ϕ((h(g(x))) = hϕ(ϕ(g(x))) = hϕ(gϕ(ϕ(x))) = (gϕ ◦ hϕ)(ϕ(x)) = (θ(g) ◦ θh)(ϕ(x)).
Hence θ(g ◦ h) = θ(g) ◦ θ(h).

Let t ∈ T (G) be the translation by the element c ∈ G. Thus t(x) = x + c for each x ∈ G. Let
y ∈ H. Then θ(t)(y) = tϕ(y) = tϕ(ϕ(ϕ−1(y))) = ϕ(t(ϕ−1(y))) = ϕ(ϕ−1(y) + c) = ϕ(ϕ−1(y)) +
ϕ(c) = y + ϕ(c). Therefore tϕ ∈ T (H). Hence θ(T (G)) ⊆ T (H).

Assume now that t ∈ T (H). Since θ−1 is an og-isomorphism of H and G, we get that θ−1(t) is
a translation in G. Thus T (H) ⊆ θ(T (G)).

Theorem 6 generalizes Theorem 1 of K. L. M. Swamy [14]

Theorem 7 Let G and H be directed groups. If there exists an og-isomorphism θ of I(G) and
I(H) such that θ(T (G)) = T (H), then G is og-isomorphic with H.
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Proof. Let θ be an og-isomorphism of I(G) and I(H). Let a ∈ G. Thus ta ∈ I(G) and θ(ta) is a
translation by a′ in H for some a′ ∈ H. Hence θ(ta) = ta′ .

Put ϕ(a) = a′ for each a ∈ G. Clearly ϕ is a bijection.
Let b, c ∈ G. Then t(b+c)′ = θ(tb+c) = θ(tb ◦ tc) = θ(tb) ◦ θ(tc) = tb′ ◦ tc′ = tb′+c′ . This implies

(b+ c)′ = b′ + c′. Thus ϕ(b+ c) = ϕ(b) + ϕ(c).
If b, c ∈ G and b ≤ c, then tb ≤ tc. This yields tb′ = θ(tb) ≤ θ(tc) = tc′ . Thus tb′(x) ≤ tc′(x)

for each x ∈ H. Hence x + b′ ≤ x + c′ for each x ∈ H. From this follows that b′ ≤ c′. Therefore
ϕ(b) ≤ ϕ(c).

Analogously we can prove that if b, c ∈ G and ϕ(b) ≤ ϕ(c), then b ≤ c. Thus ϕ is an og-
isomorphism.

Theorem 7 generalizes Theorem 2 of K. L. M. Swamy [14]

A po-group H is called a direct product of its subgroups P and Q (notation H = P ×Q) if the
following conditions are satisfied:
(i) Each element x ∈ H can be uniquely represented in the form x = p + q, where p ∈ P, q ∈ Q
(elements p and q we denote by xP and xQ and call components of x in the direct factors P and Q,
respectively),
(ii) p+ q = q + p for each p ∈ P, q ∈ Q,
(iii) x ≤ y if and only if xP ≤ yP and xQ ≤ yQ for each x, y ∈ H.

In the case that H = P ×Q it is also spoken about the direct decomposition of H.
IfH = P×Q, then clearly (x+y)P = xP +yP , (x+y)Q = xQ+yQ, (x−y)P = xP−yP , (x−y)Q =
xQ − yQ for all x, y ∈ H.

Analogously we can define direct decomposition of a partially ordered monoid.
We recall that a monoid is a non-empty set which is closed under an associative binary operation

+ and has a zero element 0.
A partially ordered monoid H is called a direct product of its submonoids P and Q (notation

H = P ×Q) if the conditions (i) - (iii) from the definition of a direct decomposition of a po-group
above are satisfied.

Theorem 8 Let G be a directed group and f a stable weak isometry in G. Let A1 = {x ∈
G+; f(x) = x}, B1 = {x ∈ G+; f(x) = −x}, A = A1 − A1, B = B1 −B1. Then
(i) A1 is a monoid and a convex subset of G,
(ii ) A is a convex subgroup of G and f(a) = a for each a ∈ A,
(iii) B1 is a commutative monoid and a convex subset of G,
(iv) B is an abelian convex subgroup of G and f(b) = −b for each b ∈ B,
(v) a1 ∧ b1 = 0, a1 ∨ b1 = a1 + b1 = b1 + a1, a1 = 0 ∨ (a1 − b1), b1 = 0 ∨ (b1 − a1) for each
a1 ∈ A1, b1 ∈ B1,
(vi) a+ b = b+ a for each a ∈ A, b ∈ B,
(vii) A1 ∩B1 = {0}, A ∩B = {0}.

Proof. (i) Let a1, a2 ∈ A1. Then f(a1 + a2) = f(a1) + f(a2) = a1 + a2. Hence A1 is a monoid.
Let a, b ∈ A1, c ∈ G, a ≤ c ≤ b. Since c ≥ 0, from |c − 0| = |f(c) − f(0)| = |f(c) − 0| we

get c ≥ f(c). Further, from |b− c| = |f(b)− f(c)| = |b− f(c)| we obtain b− c ≥ b− f(c). This
yields f(c) ≥ c. Thus f(c) = c and hence c ∈ A1. Therefore A1 is a convex subset of G.
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(ii) Let x, y ∈ A. Thus x = x1 − x2, y = y1 − y2, where x1, x2, y1, y2 ∈ A1. Then x − y =
x1−x2−(y1−y2) = x1−x2+y2−y1 = x1−x2+y2+x2−x2−y1 = (x1−x2+y2+x2)−(y1+x2).
Since x1−x2+y2+x2 ≥ 0, y1+x2 ≥ 0 and f(x1−x2+y2+x2) = f(x1)−f(x2)+f(y2)+f(x2) =
x1 − x2 + y2 + x2, f(y1 + x2) = f(y1) + f(x2) = y1 + x2, we have x − y ∈ A. Hence A is a
subgroup of G.

Further, f(x) = f(x1 − x2) = f(x1)− f(x2) = x1 − x2 = x.
Let a, b ∈ A, c ∈ G, a ≤ c ≤ b. Then 0 ≤ c − a ≤ b − a. Since 0, b − a ∈ A1, in view of (i)

we have c− a ∈ A1. Then c− a+ a = c ∈ A. Thus A is a convex subset of G.
(iii) Let b1, b2 ∈ B1. Then f(b1 +b2) = f(b1)+f(b2) = −b1−b2 ≤ 0. Then from |(b1 +b2)−0| =
|f(b1 + b2)− f(0)| = | − f(b1 + b2)| we get f(b1 + b2) = −(b1 + b2). Thus −b1 − b2 = −b2 − b1.
This yields b1 + b2 = b2 + b1. Therefore B1 is a commutative monoid.

Let a, b ∈ B1, c ∈ G, a ≤ c ≤ b. From |b− c| = |f(b)− f(c)| = | − b− f(c)| = |f(c) + b| it
follows that b− c ≥ f(c) + b. This yields 0 ≥ b− c− b ≥ f(c). Since |c− 0| = |f(c)− f(0)| =
| − f(c)|, we have c = −f(c). Thus f(c) = −c and hence c ∈ B1. Therefore B1 is a convex subset
of G.
(iv) Let x, y ∈ B. Thus x = x1 − x2, y = y1 − y2 where x1, x2, y1, y2 ∈ B1. Then x − y =
x1−x2−(y1−y2) = x1−x2+y2−y1 = x1−x2+y2+x2−x2−y1 = (x1−x2+y2+x2)−(y1+x2).
Since x1−x2+y2+x2 ≥ 0, y1+x2 ≥ 0 and f(x1−x2+y2+x2) = f(x1)−f(x2)+f(y2)+f(x2) =
−x1+x2−y2−x2 = −(x1−x2+y2+x2), f(y1+x2) = f(y1)+f(x2) = −y1−x2 = −(y1+x2),
we have x1 − x2 + y2 + x2, y1 + x2 ∈ B1 and hence x− y ∈ B. Thus B is a subgroup of G.

In view of (iii) we have x+ y = x1 − x2 + y1 − y2 = y1 − y2 + x1 − x2 = y + x.
Further, f(x) = f(x1−x2) = f(x1)−f(x2) = −x1+x2 = −(−x2+x1) = −(x1−x2) = −x.
Let a, b ∈ B, c ∈ G, a ≤ c ≤ b. Then 0 ≤ c− a ≤ b− a. Since 0, b− a ∈ B1, in view of (iii)

we have c− a ∈ B1. Then c− a+ a = c ∈ B. Thus B is a convex subset of G.
(v) Let a1 ∈ A1, b1 ∈ B1. From |(a1 + b1)−0| = |f(a1 + b1)−f(0)| = |f(a1) +f(b1)| = |a1− b1|
we obtain a1 + b1 = (a1 − b1) ∨ (b1 − a1). Since a1 − b1 ≤ a1 ≤ a1 + b1, b1 − a1 ≤ b1 ≤ a1 + b1,
we have a1 ∨ b1 = a1 + b1 and hence a1 ∧ b1 = 0. Thus a1 + b1 = b1 + a1.

Further from a1 ∨ b1 = a1 + b1 it follows that 0 ∨ (a1 − b1) = a1, 0 ∨ (b1 − a1) = b1.
(vi) Let a ∈ A, b ∈ B. Thus a = a1 − a2, b = b1 − b2 where a1, a2 ∈ A1, b1, b2 ∈ B1. In view of
(v) we get a+ b = a1 − a2 + b1 − b2 = b1 − b2 + a1 − a2 = b+ a.
(vii) Let x ∈ A1 ∩B1. Then f(x) = x, f(x) = −x. Hence −x = x ≥ 0. This yields x = 0.

Let y ∈ A ∩ B. Thus y = a1 − a2 = b1 − b2, where a1, a2 ∈ A1, b1, b2 ∈ B1. In view of
(v) we obtain a1 + b2 = a2 + b1. Then a1 − b2 = f(a1 + b2) = f(a2 + b1) = a2 − b1. By (v),
a1 = 0 ∧ (a1 − b2), a2 = 0 ∧ (a2 − b1). This implies a1 = a2 and hence y = 0.

Theorem 9 Let G be a directed group such that for each g′ ∈ G+ there exists g ∈ G+ such that
g′ = 2g. Let f be a stable weak isometry in G. Let A1, B1, A, B be as in Theorem 8. Then
G = A×B and f(x) = xA − xB for each x ∈ G.

Proof. Let x′ ∈ G+. Thus x′ = 2x for some x ∈ G+. Then |x − 0| = |f(x) − f(0)| = |f(x)|
implies x = (−f(x))∨f(x). Further, we have f(x)+x ≥ 0, −f(x)+x ≥ 0. Then f(f(x)+x) =
f 2(x) + f(x) = x + f(x) = f(x) + x, f(−f(x) + x) = −f 2(x) + f(x) = −x + f(x) =
−(−f(x) + x). Therefore f(x) + x ∈ A1, −f(x) + x ∈ B1. Let x1 = f(x) + x, x2 = −f(x) + x.
Thus x′ = 2x = x1 + x2 where x1 ∈ A1, x2 ∈ B1.
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Let x′ = a + b for some a ∈ A1, b ∈ B1. Thus a + b = x1 + x2. In view of Theorem 8 (v) we
obtain a − x1 = x2 − b, a − x1 ∈ A, x2 − b ∈ B. According to Theorem 8 (vii), A ∩ B = {0}.
Hence a− x1 = x2 − b = 0. Therefore x1 = a, x2 = b.

Thus any element x′ ∈ G+ can be uniquely represented in the form x′ = x1 + x2 where
x1 ∈ A1, x2 ∈ B1.

Let y, z ∈ G+, y ≤ z. Then y = y1 + y2, z = z1 + z2, z − y = (z − y)1 + (z − y)2
for some y1, z1, (z − y)1 ∈ A1, x2, y2, (z − y)2 ∈ B1. Thus (z − y)1 + (z − y)2 = z − y =
z1 + z2− (y1 +y2) = (z1−y1) + (z2−y2) and hence−(z1−y1) + (z−y)1 = (z2−y2)− (z−y)2.
Since −(z1 − y1) + (z − y)1 ∈ A, (z2 − y2) − (z − y)2 ∈ B, A ∩ B = {0}, we have z1 − y1 =
(z − y)1 ≥ 0, z2 − y2 = (z − y)2 ≥ 0. This yields z1 ≥ y1, z2 ≥ y2. In view of Theorem 8 we
conclude G+ = A1 ×B1.

Let g ∈ G. Thus g = h−k, where h, k ∈ G+. Hence h = h1 +h2, k = k1 +k2, where h1, k1 ∈
A1, h2, k2 ∈ B1. Then g = h1 +h2−k2−k1 = h1−k1 +h2−k2. Let g1 = h1−k1, g2 = h2−k2.
Thus g = g1 + g2 where g1 ∈ A, g2 ∈ B.

Let g = c + d for some c ∈ A, d ∈ B. Thus g1 + g2 = c + d and hence −c + g1 = d − g2.
Since −c + g1 ∈ A, d − g2 ∈ B, A ∩ B = {0}, we obtain −c + g1 = d − g2 = 0. Hence
c = g1 = h1 − k1 = gA, d = g2 = h2 − k2 = gB.

Let p, q ∈ G, p ≤ q. Then p = pA +pB, q = qA +qB. Further, we have 0 ≤ q−p = (q−p)A1 +
(q− p)B1 . Thus q− p = (qA + qB)− (pA + pB) = (qA− pA) + (qB − pB) = (q− p)A1 + (q− p)B1 .
This implies qA − pA = (q − p)A1 ≥ 0, qB − pB = (q − p)B1 ≥ 0. Hence qA ≥ pA, qB ≥ pB.

In view of Theorem 8 we conclude G = A×B.
Further, according to Theorem 8 we have f(x′) = f(x′A + x′B) = f(x′A) + f(x′B) = x′A − x′B.

Theorem 10 Let G be a directed group and G = P × Q a direct decomposition of G. Then
|z| = |zP |+ |zQ| for each z ∈ G.

Proof. Let x ∈ |z|. Then from x ≥ z, x ≥ −z we obtain xP ≥ zP , xQ ≥ zQ, xP ≥ −zP , xQ ≥
−zQ. Thus xP ∈ U(zP ,−zP ) = |zP |, xQ ∈ U(zQ,−zQ) = |zQ|.Hence x = xP +zQ ∈ |zP |+ |zQ|.
Therefore |z| ⊆ |zP |+ |zQ|.

Let y ∈ |zP | + |zQ|. Thus y = y1 + y2 where y1 ∈ U(zP , −zP ), y2 ∈ U(zQ,−zQ). This yields
y = y1 + y2 ∈ U(z,−z) = |z|. Hence |zP |+ |zQ| ⊆ |z|.

Theorem 11 Let G be a directed group and G = P × Q a direct decomposition of G with Q
abelian. Let f(x) = xP − xQ for each x ∈ G. Then f is a stable weak isometry in G.

Proof. Let x, y ∈ G. In view of Theorem 12 we have |f(x) − f(y)| = |xP − xQ − (yP − yQ)| =
|xP−xQ+yQ−yP | = |xP−yP−(−yQ+xQ)| = |xP−yP−(xQ−yQ)| = |(x−y)P−(x−y)Q)| =
|(x− y)P |+ |− (x− y)Q)| = |(x− y)P |+ |(x− y)Q)| = |(x− y)P + (x− y)Q)| = |x− y|. Clearly
f(0) = 0. Therefore f is a stable weak isometry in G.

From Theorems 9 and 11 we get the following corollary.

Corollary 3 Let G be a directed group such that if g′ ∈ G+, then g′ = 2g for some g ∈ G+.
Then there exists a one-to-one correspondence between stable weak isometries in G and direct
decompositions of G with abelian second factor.
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Theorem 12 Let G be a 2-isolated directed group. Let f and g be stable weak isometries in G.
Let Af

1 = {x ∈ G+; f(x) = x}, Ag
1 = {x ∈ G+; g(x) = x}, Bf

1 = {x ∈ G+; f(x) = −x},
Bg

1 = {x ∈ G+; g(x) = −x}. If Af
1 = Ag

1 and Bf
1 = Bg

1 , then f(x) = g(x) for each x ∈ G.

Proof. Let z ∈ G+. Then from |z| = |z − 0| = |f(z) − f(0)| = |f(z)| we obtain z ≥ f(z), z ≥
−f(z). Thus −f(z) + z ≥ 0, f(z) + z ≥ 0. Let z1 = f(z) + z, z2 = −f(z) + z. Then f(z1) =
f(f(z)+z) = f 2(z)+f(z) = z+f(z) = f(z)+z = z1, f(z2) = f(−f(z)+z) = −f 2(z)+f(z) =
−z + f(z) = −(−f(z) + z) = −z2. Hence 2z = z1 + z2 where z1 ∈ Af

1 , z2 ∈ B
f
1 .

Let 2z = a+ b where a ∈ Af
1 , b ∈ B

f
1 . Thus z1 + z2 = a+ b. Hence z1− z2 = f(z1) + f(z2) =

f(z1 + z2) = f(a+ b) = f(a) + f(b) = a− b. Then from −z2− z1 = −b− a and z1− z2 = a− b
we get −2z2 = −2b. In view of Theorem 8 (vi) we get 2(z2 − b) = 0, 2(b− z2) = 0. Since G is a
2-isolated group, we have z2 ≥ b, b ≥ z2. Therefore z2 = b. Then z1 = a.

Hence the element 2z can be uniquely represented in the form 2z = z1 + z2, where z1 ∈
Af

1 , z2 ∈ B
f
1 .

Analogously we can show that 2z can be uniquely represented in the form 2z = z′1 +z′2 where
z′1 ∈ A

g
1, z

′
2 ∈ B

g
1 , z

′
1 = g(z) + z, z′2 = −g(z) + z.

If Af
1 = Ag

1 and Bf
1 = Bg

1 , then z1 = z′1, z2 = z′2. Thus f(z) + z = g(z) + z, −f(z) + z =
−g(z) + z. This implies f(z) = g(z).

Let x ∈ G. Since G is a directed group, we have x = x1 − x2 where x1, x2 ∈ G+. Then
f(x) = f(x1 − x2) = f(x1)− f(x2) = g(x1)− g(x2) = g(x1 − x2) = g(x).

CONCLUSION

In the paper some properties of weak isometries in directed groups are described. It is shown
that directed groups G and H are og-isomorphic if and only if there exists an og-isomorphism
θ of I(G) and I(H) carrying translations onto translations. Further it is shown that stable weak
isometries in some directed groups are directly related to the structure of these directed groups.
Namely, there exists a one-to-one correspondence between stable weak isometries in a directed
group G with the property that for each g′ ∈ G+ there exists g ∈ G+ such that g′ = 2g and direct
decompositions of G with abelian second factor.
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Abstract: One of the most important things in real time is modelling of dynamics of economic 

growth. And one of the determining components of growth is stability of market relations. As 

a rule, building of mathematical models is based on the balance of products and the possible 

development of manufacture over a certain time interval. 

As a rule, the mathematical model has equilibrium positions and it is interesting to figure out 

conditions when this position is asymptotically stable. The state of system at the moment is 

essentially depend on prehistory.  Because of this facts model of free competition market was 

developed and investigated, found out which components and how affect trade. 

 

Keywords: differential equations, market model, equilibrium point, characteristic equation, 

delay. 

 

 

INTRODUCTION 

 

In work [1] the mathematical model of dynamics of pricing in market of free competition was 

offered. The model had the form of a system of ordinary differential equations with a 

fractional-rational right-hand side. In this paper, system was written in a universal vector-

matrix form. The stability of the equilibrium position is studied, i.e. compromise price. 

It should be noted that in modelling of processes in economics, ecology, in social phenomena, 

in contrast to Newtonian mechanics, the influence of aftereffect plays an important role. The 

state of system at the moment is essentially depend on prehistory. Laws adopted by the state 

at present time, begin to act after a certain period of time, called delay time. And more 

adequate apparatus for modelling dynamic processes are systems with aftereffect, in 

particular, a system of differential equations with retarded argument [2-4]. Therefore, work 

considers the influence of delay on stability of pricing dynamics. 

 

1. MODEL OF FREE COMPETITION MARKET 

 

Consider the mathematical model of market dynamics described by the following system of 

ordinary differential equations [1] 

 
       tppCtpppV

dt

tdp
jjjjj

j
,,, 0

0      tqqGtpppD jjjjj ,,, 00 
.                              (1) 

Here   tpppV jjjj ,, 0
,    jj ptp , nj ,1  functions that characterize the influence of seller, 

  tpppD jjj ,, 0
,   ptp j  , functions that characterize the influence of buyer,   tppC j ,0 , 
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        tptptptp n,...,, 21  functions that characterize the impact of competition, 

  tqqG jj ,0
,         tqtqtqtq n,...,, 21 , nj ,1  functions that characterize the influence of 

external factors (state, laws, etc.). 

The entered variables have the following content:  tp j  - price of j - th good, which is sold at 

the moment 0t , 0

jp  - equilibrium price for j - th good,  tq j  - number of units of j - th 

good, which is sold at the moment 0t , 0

jq  - equilibrium quantity of j - th good, 


jp  - lower 

price threshold of j - th good (prime cost of good), 

jp  - upper price threshold j - th good 

(buyer's capabilities), 
 jjj ppp 0
 - allowable price difference  for j - th good for seller, 

0

jjj ppp  
 -  allowable price difference  for j - th goods for the buyer. 

In normal trading, need be maintained    jj ptp , nj ,1 , i.e the seller should not suffer 

losses. As the functions   tpppV jjjj ,, 0 ,   tppC j ,0 ,   tpppD jjj ,, 0 , 

    tpptqqG jjjj ,,, 00
 we can propose the following functions of fractional-rational form [1] 
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00 , ,                                                              (2) 
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   jjj ptpp*
,    jjj qtqq*

, jv , jd , jic , jr , je , jie - weight coefficients of influence 

functions.  nji ,1,  . 

 The proposed system (1) with functions (2) is a system where right-hand side is the 

sum of a linear, quadratic, and fractional-rational summands. The system has a equilibrium 

point (a price that suits both sides)   0

ii ptp  , ni ,1 . It is interesting to see under what 

conditions this point is asymptotically stable, i.e. the small perturbations of the system 

parameters do not change the qualitative characteristics.  

 

2. SYSTEM WITH DELAY ON THE PLANE. 

 

We consider the system (1), (2) on the plane. It has the form 

 


dt

tdp1  
  
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As a rule, between the time of passing law and current moment of time, there is a 

certain gap, which can be called "information lag". Besides, the influence of competition is 

not shown immediately. Therefore, the functions  jG  and  jC  in dependence (2) can be 

considered, depending on prehistory and having the form 


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
  , nji ,1,  .              (3) 

And on the plane, we will have a system of two differential-difference equations with delay 
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dt
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 .                               (4)   

The system has an equilibrium point (a price that suits both sides)   0

11 ptp  , 

  0

22 ptp  . It is interesting to see under which conditions this rest point is asymptotically 

stable. Let's make a replacement 

    txptp 1

0

11 1 ,     txptp 2

0

22 1 . 

In this case, the study of steady state of equilibrium   0

11 ptp  ,   0

22 ptp   of the system (4) 

reduces to study of zero position of equilibrium   01 tx ,   02 tx  of the system of 

perturbation equations 
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We transform the resulting system to universal form. Using vector-matrix notations, we write 

 
 










tx

tx

dt

d

2

1  

 

 

 






























tx

tx

ercerc

ercerc

2

1

222121221

121121112

1

1
 

   
   
















txtx

txtx

21

21

00

00

2

1  
 








































tx

tx

reer

er

er

er

re

2

1

22212

212

121

121

11

2

0

0

2

    

 
 




































































tx

tx

p

p

p

p

p

p

tx

tx

2

1

22

11

1

2

1

0

2

0

1

2

1

0

0

0

0

0

0

)(0

0)(




 

 
 



































































tx

tx

pd

pd

p

p

p

p

tx

tx

2

1

22

11

1

2

1

0

2

0

1

2

1

0

0

0

0

0

0

)(0

0)(
.           

We introduce the following notation 
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Then the system takes universal vector-matrix form 

 tx
dt

d
 tAx      tBxtX     


tVxPPtX

1

00    )(
1

00 tDxPPtX


 .      (7)       

 

3. INVESTIGATION OF STABILITY OF STATIONARY POSITION OF 

SYSTEM WITH A DELAY ON THE PLANE.  

 

Equilibrium positions of system with delay are determined in the same way as for system 

without delay. They have the form   01 tx ,   02 tx . Let us carry out the linearization of 

system (7) in the neighborhood of zero equilibrium position. 

We rewrite system (7) in form 

 tx
dt

d
 tAx      tBxtX     txtxF ,                        (8) 

Where 

         DPPtXVPPtXtxF
1

00

1

00


 . 
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Since the matrix function   txF  has a form 

  
         

         








txtxFtxtxF

txtxFtxtxF
txF

21222121

21122111

,,

,,
, 

then the system (8), linearized at zero point, will be present in the form 

 tx
dt

d
    tAxtxA

~
, 

     
     0

~




tx

txD

txtxFD
A . 

We compute the Jacobian 

  
 xD

xxFD
= 
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








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
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
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


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




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






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






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
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2
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1
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2
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21111
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x

xF
x
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x

x

F
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x
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
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
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






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
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
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







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



















22

2

221

2

122

1

221

1

1

12

2

211

2

112

1

211

1

1

F
x

xF
x

xF
x

xF
x

x

F
x

xF
x

xF
x

xF
x

x










2221

1211

FF

FF
. 

And at the point  0,0O  we obtain 

   
      

   

   
 0

0,00,0

0,00,0

2221

1211

0,0 21

F
FF

FF

txD

txFD

txtx













. 

Thus the matrix A
~

 has a form 

    DPVPA
11~ 

 




















































22

11

1

2

1

22

11

1

2

1

0

0

0

0

0

0

0

0

pd

pd

p

p

pv

pv

p

p
 















22

11

0

0

dv

dv
. 

We denote 

1111 dvp  ,  111211 1 ercq  , 1211212 ercp  , 2122121 ercp  , 

2222 dvp  ,  222122 1 ercq  . 

Characteristic equation of linearized system has the form 

   EAeA ~
det 























222221

121111det
qepp

pqep
 

=         02

221111222211221122112211

2     eqqeqpqpppqqepp . 

Necessary condition for stability of system with delay is asymptotic stability of system 

without delay. By putting the value of time-delay 0 , we obtain that characteristic equation 

of system without delay on the plane has the form 

          0221111222211221122112211

2  qqqpqpppqqpp  . 

Moreover, necessary and sufficient condition for stability on the plane is the positivity of the 

coefficients of the characteristic equation, i.e. 

022112211  qqpp , 02211112222112211  qqqpqppp .  

Example. It should be noted that the initial position for systems with delay is determined not 

by the initial point, but by the initial function. Systems with delay are systems of differential 

equations in an infinite-dimensional banach space. Consider the following example. 
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The corresponding matrices have the following form 









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
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75.025.2
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
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
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
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



V  









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D . 

The system of perturbation equations has the form 

 


dt

tdx1  
    



















1

0

11

11

1

0

11

11
1

pptx

pd

pptx

p
tx


     111121 1 erctx   

              )( 121122 erctx        )(11122121   txtxetxer , 

 

 


dt

tdx2  
    



















2

0

22

22

2

0

22

22
2

pptx

pd

pptx

p
tx


     22212 1 erctx   

  )( 212211 erctx           txtxetxer 2221212 .                   

System, linearized in the neighborhood of zero point, has the form: 









)(9.0)(1.2)(7)(

)(75.0)(25.2)(11)(

2122

2111





txtxtxtx

txtxtxtx




. 

Its characteristic equation has the form 

0575.78025.285.5)15.05.18( 22    eee . 

In the absence of delay, characteristic equation will be 

0805.7035.182   . 

It has roots with negative real part. Hence, there exists 00  , that when 0   system of 

equations with delay will also have an asymptotically stable equilibrium position. 

 

CONCLUSION 

 

We always have competition on market, and sellers of similar goods or suppliers of such 

services always depend on each other. For this reason, the system of dynamics of free 

competition market was investigated. The goal was to determine when this system has a stable 

equilibrium position. In case of markets, equilibrium means a situation when sellers and 

buyers are collectively satisfied with current combination of prices and sales or purchases, 

and thus have no incentive to change existing situation. If, for some reason, equilibrium price 

has not been established, then forces are emerging in market aimed at establishing such price. 

The ideal economic equilibrium implies the conditions of perfect competition and absence of 

external effects. 

Nevertheless, in a real economy such conditions are not observed: there is no perfect market, 

94



there are side effects of entrepreneurial activity, cyclical and structural fluctuations, 

unemployment, inflation. All of them deduce economy from equilibrium state. Moreover, in 

economy term "delay" is very popular, that is why we investigate the system of delay 

difference equations. In such way, economic system ca be brought into a state of equilibrium 

that will correspond to market realities.  

The real equilibrium is an equilibrium that is established in economy in conditions of 

imperfect competition in the presence of external and internal factors of influence on the 

market. Each of the market participants can influence the trade with a certain coefficient. In 

the course of the study of the obtained system, it was established that for the equilibrium of 

the system, the total influence of the seller and the buyer should be more than the influence of 

the state. This model can be used in real business to minimize risks, investigate market and 

increase profits. 
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Abstract: Electrocardiography and blood-pressure measurement is one of the most important 

medical examination methods used in clinics. An innovative laboratory was created in order 

to provide students with the practical Electrocardiography (ECG) and the blood pressure 

(BP) experience using the latest e-learning multiple-step learning concepts. This educational 

course focuses on students of General medicine and Dentistry and expanding their knowledge 

in fields ECG, BP. The course content is presented in three different levels of details and 

students can choose from the highest to the lowest level of difficulty according to their needs. 

Based on students’ feedback, multiple-step-learning, e-learning course ECG, BP for the study 

year 2016/2017 was modified and enhanced with new step-by-step lab instructions. The 

impact of enhancement of the course ECG, BP to the final student results has been analysed. 

 

Keywords: biophysics, electrocardiography, blood pressure measurement, education,  

E-learning, analysis 

 

 

INTRODUCTION 

 

Students, during their studies at the Faculty of Medicine, obtain, through the education 

specialization of General Medicine and Dentistry, basic knowledge of physical and 

biophysical principles of physiological processes in human body. Biophysics leads students in 

their first year of studies to logical reasoning in finding solutions to the tasks built on basis of 

physics. This subject is not one of the most popular and, to students, it is therefore necessary 

to give a hand. Complex processes should be explained to students by attractive and creative 

forms of education. Possibilities of physics in medicine are far-reaching and students should 

learn the correct orientation in the maze of physical concepts, methods, equipment and 

processes. The latest techniques and the most modern devices are necessary to include into 

specific courses for the preparation of future physicians. The preparation should directly 

correspond with possibilities of their future workplace, and current trends in modern 

medicine. 

The cornerstone for attractiveness in field of physics is the use of modern information and 

communication technologies and practical demonstrations that have specific practical 

outcomes. Department of Medical Biophysics has been involved in research and development 

of e-learning systems. These were found more effective in education of medical systems [1], 

[2] and - especially for laboratory experiments [3]. For example, in laboratory practicum in 

areas such as nitinol stents [4], materials for dentistry [5], [6] and other several topics, e-

learning courses were created to deepen knowledge and combine an interesting education 

environment with practical examples. Also, knowledge of basic branches of the statistics 

according to Bezrouk [7] and design of the experiments [8, 9] is an important part of the 

practical training of undergraduate students for their future research.  
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This paper describes the outcomes from an innovated interactive e-learning course ECG, BP 

in specialized laboratory using multiple-step learning (MSL) [10] concept of education. 

Mandatory practicum is based on basic knowledge about human circulatory system where 

students are virtual patient and physician in one person and they compare and see the task 

from both sides. The laboratory is designed to show how to measure ECG and blood pressure 

in the real environment and tries to increase the popularity [11] of biophysics as such. 

Attractiveness of real solutions can be increased by special software means, like in [12] and 

this can be also modified for the measurement ECG, BP. Real data to post-processing are 

used. Real output from ECG test is also printed sample with some basic curves. 

The goal of the research was to answer hypothesis and assumption that proved to be crucial 

when testing success of the test results from part of the subject Medical Biophysics. We 

expected change of quality of the e-learning step-by-step lab instructions and data-sheets, the 

results were statistically significantly different. As a side effect, we also attempted to monitor 

the time if there is no positive effect and shortening the laboratory task.  

There are many scientific articles, where techniques, methods and use of ECG test and BP 

measurement are described (a simple search for topic “CG, BP” in the Web of Science 

database produces 914 results in the period 2000-2018). This work is new and it is unique in 

accessing these methods, tests for educational purposes for students of medicine in ECG, BP 

measurement. 

 

1 MATERIALS AND METHODS 

 

1.1 ECG in Modern Conception of Learning and Mastering 

 

As it was written in the previous text, the course in the laboratory is mandatory and it is the 

main part at the biophysical practical laboratories. A group for ECG, BP course usually 

contents 3-5 students. 

The structure of the course can be split into several parts, all in the e-learning form (Fig.1): 

Theoretical preparation as Introduction (study materials – basic theory and presentation are 

prepared in the system MSL Moodle); Manuals and data-sheets (how to be prepared on the 

lab and basic knowledge about devices); Basic questions and Sample test (own verification of 

knowledge from theory); External links; Online chat (individual questions and answers); 

Instruction for all tasks (ECG, blood pressure measurement); Micro-test (written before the 

start of the lab); Protocol ECG and BP (working with the data, control mechanism); 

Questionnaire (students feedback). 

 

 
Fig. 1. Categorization of the topics in the MSL system Moodle 

Source: own 
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1.2 E–protocols 

 

For a fair environment, MS excel protocol sheet with an auto-evaluation of measured and 

calculated results was prepared. Students must use the basic physical and mathematical 

equations which correspond to the individually obtained data to receive immediate positive or 

eventually negative feedback. Each student receives individual results of their own work and 

can be confronted in the group with or without the teacher’s assistance. Protocol consists of 

predefined free frames where data have to be written in three significant digits forms. An 

automatic MS Excel macro system must be sometimes upgraded for better accuracy by 

Excel’s VBA environment. Tolerance of the result is ±1%. Positive answer colors the cell by 

green, negative answer by red as it is shown in Fig. 2. Gray cells are only informative and 

blocked for students (not allowed for any text). For a middle calculation, they can use other 

MS Excel lists which are free to use. 

 

 
Fig. 2. Interactive protocol of ECG (at example all data in columns are highlighted green 

so this part of the protocol is correct, and it is possible to “Send” the protocol into the 

database) 

Source: own 

   

When all required cells are green, then the protocol can be sent by the button to the system 

database. The protocol in MS Excel is connected with real online ambulant and database 

system PC Doctor. If all credentials – usually ISIC ID, student's name, group number and 

results fit the limits, student can check the success points in PC Doctor SW in his own 

patient/physician card (each student has an individual account as a patient and a physician as 

well).  

The biggest benefit of this “live” and interactive protocol evaluation is the speed of control 

mechanism of correct answers. Calculations can be, in case of need, solved with the helping 

hand of teacher and the solution can be found together with significant educational impact. 
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1.3 ECG, BP – Innovation of Measurement Instructions 

 

New step-by-step manuals, data-sheets were prepared for the study year 2016/2017. The 

instructions are more detailed and illustrated by specific pictures step-by-step according to 

the measurement procedure. The lab data-sheet is online in e-learning form as well as directly 

on paper form on the table during the measurement. The specific devices and their 

functionality, SW and program control are explained more into the deep but still the need to 

think and seek solutions of the task is maintained. The most important parts are highlighted as 

it is shown in Fig. 3.  

 

 
Fig. 3. Step by step instruction in manual for BP 

Source: own 

 

1.4 Statistical Evaluation 

 

The result from the students’ final tests for our research were compared, processed, and 

statistically analyzed using MS Excel 2007 (Microsoft Corp, Redmond WA, USA) and NCSS 

2007 (NCSS LLC, Kaysville, UT, USA. www.ncss.com). The chi-squared test was used and 

the value of P<0.05 was considered as statistically significant. 

The impact of change step-by-step instruction of data-sheets was evaluated using the 

cumulative levels of success, related to the topic ECG, BP, in final exam tests 2016/17 vs 

2015/16 (before modifications). Significant increase of the cumulative level of success in the 

final exam test 2016/2017 vs 2015/2016 was considered as positive education impact.  These 
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two study years were compared. In these tests, the topic ECG, BP was represented by 4 types 

of questions: QRS complexes - ECG and bipolar leads description; Cardiac Output – volumes, 

heart rate; Heart work - power and work of the heart; Devices - blood pressure, calculations. 

The level of success in each test was based on the ratio of  number of correct answers vs the 

total number of answers. Below, for better understanding some examples are shown from the 

final exam test at Fig. 4. 

 

QRS: 

 
 

Cardiac output (CO): 

 
 

Heart work: 

 
 

Devices 

 
Fig. 4. Example of the formulation of the questions at final test from 4 selected topics 

Source: own 

2 RESULTS 

The greatest benefit brought by the innovative e-learning course ECG, BP was evidently the 

time saving. This measuring and testing laboratory ECG, BP is relatively difficult and time 

consuming – approximately three teaching hours in total. The new course structure reduced 

the time by almost 30 minutes. Students appreciated this very much. The rest of the time is 

usually used for a preparation of protocols.  

The individual level of success (Fig. 5) for specific types of questions as QRS, Heart work 

and Devices show insignificant but distinct positive change in the final test 2016/17 when 

compared with the final test 2015/16. Figure 5 shows that there is also negative but 

insignificant change in the level of success in question CO. 
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Fig. 5. Comparison of individual levels of success for specific final test and type of a question 

Source: own 
 

Totally, the cumulative level of success of the test 2016/17 is better (higher), although 

particularly insignificant, when compared with the test 2015/16 as can be seen in Table 1.  

  

School Year 
Number of 

answers 

2015/16 

correct 160 

total 282 

ratio [%] 56,7 

2016/17 

correct 187 

total 307 

ratio [%] 60,9 

  p - value  0,03156 

Table 1. Final exam test cumulative levels of success - comparison of 2015/16 vs 2016/17, 

related to topic ECG, BP, represented by the ratio [%] of the number of correct answers vs the 

total number of answers. 

Source: own 

3 CONCLUSION 

The innovative ECG, BP course combines e-learning and distance method of theoretical 

preparation with practical use of specific devices. The course modification from the school 

year 2016/2017 shows better results (success in the final test) than in the previous version (till 

2015/2016). Also, time of preparation of the measurement and its own implementation has 

been significantly shortened. This is considered to be one of the major benefits of adjusting 

the course. As a result, the teacher has a larger time-frame to explain more complex concepts 

and also students have more time to memorize basic procedures. The e-learning course 

teaches students to use their theoretical knowledge to prepare and build real solutions that can 

be determined and evaluated. Teamwork and discussion of final results simulate the 
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environment for their future careers. Students significantly improve their knowledge of 

biophysics through an entertaining and modern form of e-learning MSL teaching. 

Our innovative solution of ECG preparation, BP laboratory uses general knowledge of other 

work based at the MSL concept and extends it into specific practical use. This work uniquely 

and originally intervenes in the practical learning of ECG, BP. The positive impact of the 

innovated laboratory is evident and we will certainly work on further improvements to both 

sites of MSL concept and the manuals for laboratory tasks. Research in the field of the correct 

interpretation of backgrounds and manuals for students has proved to be crucial in this work 

and has substantial practical impact on teaching. Further studies including larger samples 

from multiple medical schools and in objective assessment of skills performance might 

facilitate an accurate evaluation impact of course innovations on the quality of teaching and 

also define opportunities for improvement. 
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Abstract: This paper is motivated by the results of rearrangements of conditionally 
convergent numeric series. From them we get to an inherent question: What are the 
properties of the set of all sequences (��) where �� = ±1, that preserve the convergence of 
the series? 
Let (�) = ∑ ��  be a conditionally convergent numeric series and X the set of all sequences 
(��), where �� = 1 or �� = −1. By ���(�) we denote the set of all sequences from space X, 
for which the series ∑ ���� is once again convergent and CPS we denote a set of all 
sequences from X, that preserve the convergence of all conditionally convergent numeric 
series. In this paper we study the porosity of ���(�) and CPS in X.  
 
Keywords: the numeric series, the sequences,  convergence preserving sequences, porous set. 
 
 
INTRODUCTION 
 
Let ∑ ��

�
���  be an absolutely convergent series. No possible rearrangement will change its 

convergence or sum. They can be changed only by changing its members, as is shown in 
paper [5]. 
The situation is different if the series ∑ ��

�
���  is conditionally convergent. Using a 

rearrangement of its members we can either get a convergent series with a predetermined sum 
or a divergent series. Examples of different sums with changes of the harmonic series  

∑
(��)�

�
�
���  can be found in paper[4].  

If the series ∑ ��
�
���  is absolutely convergent, then every sequences of numbers ±1 preserves 

its convergence. Then we can concern ourselves with the set of all sums of the series 
∑ ����

�
��� . This problem is the focus of papers [6], [7], [8]. 

Let (�) = ∑ �� be a convergent numeric series and � = (��) a sequence of numbers  
�� = ±1. We say that the sequence  � = (��) preserves the converge of series  (�) = ∑ ��, if 
the series ∑ ����  is once again convergent.  
This work follows up on the author’s contribution to the MITAV 2017 conference. It was 
focused on the following problem: 
By ��� we denote the set of all sequences that preserve the convergence of every 
conditionally convergent series. What is the porosity of set CPS in set X? 
It is evident that there are multiple sequences that preserve the convergence of a single 
conditionally convergent series. Is this set porous in set X as well? 
 
 
1  BASIC TERMS AND DEFINITIONS 
 
1.1  Set porosity 
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The term porous set can be found in papers [9] and [10]. 
Let (�, �) be a metric space, � ⊆ �. 
Let � ∈ �, � ∈ ��. By �(�, �) we denote a sphere with the center x and radius  �, that is 

�(�, �) = {� ∈ �: �(�, �) < �}. 
Let us set  

�(�, �, �) = sup{� > 0: ∃� ∈ �, [�(�, �) ⊆ �(�, �)]˄[�(�, �) ∩ �] = ∅}. 
Then 

�(�, �) = limsup
�→��

�(�, �, �)

�
. 

From the definition we can see that �(�, �) ∈ 〈0,1〉. 
The set � is porous in point �, if �(�, �) > 0. 
If there exists a number � ∈ 〈0,1〉, such that �(�, �) ≥ �, the set  � is referred to as �-porous 
in point �. 
We refer to set � as �-porous (� − �-porous) in point �, if � = ⋃ ��

�
��� , where �� is 

porous (�-porous) in point x for every � = 1, 2, …. 
From these definitions it is evident that: 
If set � ⊂ � is porous in every point of space �, then � is nowhere dense in �. 
If the set � ⊂ � is �-porous in every point of space  �, then � is in the first category in �. 
 
1.2  Space � 
 
Let � be the set of all sequences � = (��) , where �� = 1 or �� = −1. On this set we can 
establish the Baire metric �(�, �) as follows: 
Let � = (��), � = (��) be two sequences from set �. Then 
i) if � = � ⇒ �(�, �) = 0 

ii) if � ≠ � ⇒ �(�, �) =
�

�,
 , � = ���{�: �� ≠ ��}. 

It is proven (e.g. [8] ) that space (�, �) is a complete metric space. 
 
1.3  Space ��� 
 
Let ∑ ��

�
���  be any continually convergent series. 

By ��� we denote the set of all sequences of space � that preserve the convergence of every 
continually convergent series. 
 
The following theorems have been proven for this set: 
 
Theorem 1.1. Sequence � = (��)���

�  is in set ��� if and only if there exist a natural number 
�, such that ��, ��, … , ��, … is composed of at most � constant blocks. [1] 
 
Note: A finite (respectively infinite) sequence (��)���

�  such that �� = �� for every �, � =

1,2, … , � where � ∈ � ∪ {∞} is called a constant block. 
 

Let us denote �� = �� ∈ �: �� = ���� ��� � ≥ � + 1�. 

Then ��� = ⋃ ��
�
��� . 

 
For sets defined as such it is proven in paper [3 ] that: 
Theorem 1.2. For every � ∈ � the set �� is nowhere dense in every point of space �. 
Theorem 1.3. The set ��� is dense and of the first Baire category in �. 
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1.4  Space ���(�) 
 
Let (�) = ∑ �� be a conditionally convergent series.  By  ���(�) we denote the set of those 
sequences � = (��) from space � that preserve the convergence of these series, i.e. those for 
which the series ∑ ���� is once again convergent.  
It is evident that ��� ⊆ ���(�).  
 
 
2  MAIN RESULTS 
 
The set �� is nowhere dense, from which arises the question of its porosity. In work [3] we 
can find the following theorem:  
Theorem 2.1.. For every � ∈ � the set �� is 1 − porous in every point of space �. 
Proof: Let  � = (��)���

�  be any point of space �, �(�, �) is the vicinity of this point, 
let 

�� = �� ∈ �: �� = ���� ��� � ≥ � + 1�. 

Let us choose � ∈ � such that  
�

�
≤ � <

�

���
 and � ≥ � + 1. 

 
Let us construct point � = (��)���

�  from � as follows: 
 

�� = �
��, � = 1, 2, … , �

(−1)���, � = � + �, � = 1, 2, …
 

 
A sequence defined as such � = (��)���

� ∈ �(�, �) and � ∉ ��. 

Let us create a sphere � ��,
�

���
�. 

If any sequence  � = (��)���
� ∈ � ��,

�

���
�, then �� = �� pre � = 1,2, … , � + 1 

and � ∈ �(�, �) (from the definition of �). 

� ��,
�

���
� ⊆ �(�, �) and � ��,

�

���
� ∩ �� = ∅ 

�(��, �, �) ≥
1

� + 1
 

From the definition of � we get 

�(��, �, �)

�
≥

1
� + 1

1
� − 1

=
� + 1

� − 1
 

If � → 0� then � → ∞ a  

�(��, �) = limsup
�→��

�(��,�,�)

�
= 1. 

Point � is any point of space �, i.e. the set �� is 1-porous in every point of space �. 
 
From this theorem we immediately get (in paper[3]): 
Theorem 2.2. The set ��� is � − 1-porous in every point of space �. 
Proof: It is sufficient to remember that ��� = ⋃ ��

�
��� . 

 
Theorem 2.3. Let (�) = ∑ �� be a conditionally convergent series. Then the set ���(�) is a 
set of type ��� (i.e. ���(�) = ⋂ ⋃ ���

�
���

�
��� , where ��� is a closed set). 

Proof: Let (�) = ∑ �� be a conditionally convergent series. 
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The sequence � = (��)���
�  is from the set ���(�) (i.e. the series ∑ ���� converges) if and 

only if 

∀� ≥ 1 ∃� ∀� ≥ � ∀� ≥ 1: ����� ���� + ⋯ + ���� ����� ≤
1

�
. 

Let us denote  

�(�, �, �) = �� = (��) ∈ �: ����� ���� + ⋯ + ���� ����� ≤
�

�
�. 

From the characterization of the set ���(�) we get 

���(�) = � � � � �(�, �, �)

�

���

�

���

�

���

�

���

. 

The set �(�, �, �) is closed for every �, �, � ∈ �, therefore the set ���(�) is of type ���. 
 
When proving porosity we need to limit ourselves to a special class of conditionally 
convergent series.  
 
Theorem 2.4. Let the conditionally convergent series (�) = ∑ �� meet the condition 

 limsup
�→�

�|����| + ⋯ + �����(�)�� > 0, where ��(�)�
���

�
 is a sequence of natural numbers, 

for which ��(�)� ≤ � ∙ �, � ∈ ��. Then the set ���(�) is � −
�

���
-porous in every point of 

space �. 
Proof: Let ∑ �� be a conditionally convergent series and (��) is such a sequence of numbers 
±1, that the series ∑ ���� converges. 
We denote (as in the previous proof)  

�(�, �, �) = �� = (��) ∈ �: |���� ���� + ⋯ + ���� ����| ≤
1

�
� 

and the set  

�(�. �) = � � �(�, �, �)

�

���

�

���

. 

We show that the set �(�, �) is 
�

���
-porous for every �. 

Let �� = (��
�) ∈ � and  � > 0. 

From the preconditions of the theorem there exists � > 0 and such a sequence of indices 
(��), that the following holds true: 

 ������� + ⋯ + ����������� > � for � = 1,2, …. 

For � > �� ( 
�

��
= �) then 

������� + ⋯ + ����������� >
�

�
 for � = 1,2, …. 

We find an index ��, for which 
�

���

≤ � <
�

�����
. 

Then � ���,
�

���

� ⊆ �(��, �). 

We create a sequence � = (��) ∈ � as follows: 

�� = �
��

�,             � = 1,2, … , ���
 

��
� ∙ sign ��,           � > ���

. 

From the definition of sequences �� = (��
�) and � = (��) we get �(��, �) ≤

�

�����
, from 

which 
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� ��,
1

���

� ⊆ � ���,
1

���

�. 

We create a sphere � ��,
�

���������
�
� such that 

 

� ��,
1

���
+ �����

�
� ⊆ � ��,

1

���

�. 

Let � = (��) be any point of this sphere, i.e. � ∈ � ��,
�

���
������

�
�. 

Then �(�, �) <
�

���
������

�
 results in  �� = �� for � = 1, 2, … , ���

+ �����
�. 

In regards to the definition of the sequence � for � > ���
 we have 

������������� + ⋯ + ����
������

�����
������

�� = �������� + ⋯ + �����
������

�� >
�

�
. 

That means that � ∉ � ��, ���
, �����

��. 

Therefore 
 

� ��,
1

���
+ �����

�
� ∩ � ��, ���

, �����
�� = ∅. 

In view of the definition of �(�, �) 

� ��,
�

���
������

�
� ⋂ �(�, �) = ∅ for every � and any � > ��. 

Consequently 

�(��, �(�, �), �) ≥
�

���������
�
. 

From the choice of the number ���
 we get 

 

�(��, �(�, �), �)

�
≥

1

���
+ �����

�

�
≥

1

���
+ �����

�

1
���

− 1

=
���

− 1

���
+ �����

�
= 

 

=

1 −
1

���

1 +
�����

�
���

≥

1 −
1

���

1 + �
. 

When we take � → 0�, then ���
→ ∞ and therefore 

����, �(�, �)� = limsup
�→��

�(��, �(�, �), �)

�
≥

1

1 + �
> 0. 

We have proven that the set �(�, �) is 
�

���
-porous in every point of space �. 

Then the set 

���(�) = � � �(�, �)

�

���

�

���

 

is � −
�

���
-porous in every point of space �. 
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CONCLUSION 
 
 
From the theorems in chapter 2 it is evident that even if the set ���(�) is larger than the set 
���. In this paper, we have proven that the set ���(�) is porous for a special class of series 

(more precisely  � −
�

���
-porous) in every point of the space of sequences of numbers ±1. 

Another key result in this paper is the topological characterization of the set ���(�). For 
every conditionally convergent series (�) = ∑ �� the set ���(�) is of type ��� (i.e. 
���(�) = ⋂ ⋃ ���

�
���

�
��� , where ��� is a closed set). 
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Abstract: Research into graph spectra includes the study of upper and lower bounds on certain
important eigenvalues, such as the largest and the smallest positive ones. A way to obtain good
lower bounds on the smallest positive eigenvalue of a graph is to consider its ’inverse’ graph. The
inverse of a graph with a non-singular adjacency matrix may be defined to be the edge-labeled
graph determined by the inverse matrix. This way the spectrum of the inverse graph will be re-
ciprocal to the spectrum of the original graph. This property will be retained even if the matrix
is singular but one has to take a generalized inverse (a special case of both Drazin and Moore-
Penrose inverses) instead.
In this contribution we determine inverses of cycles of any length. As a cycle of length n ≥ 3 has a
non-singular adjacency matrix if and only if n is not divisible by 4, the task includes determination
of both classical and generalized inverses (the latter for n a multiple of 4).

Keywords: Spectrum of a graph, eigenvalue, adjacency matrix, inverse matrix, singular matrix,
group inverse, cycle.

INTRODUCTION

Graphs considered in this paper are all simple, finite and undirected, except that we allow at
most one loop attached at a vertex. We will further assume that each edge e of a graph G carries
a non-zero real label α(e), and the pair (G,α) will be called a edge-labeled graph. Let A be an
adjacency matrix of (G,α), which means that for any two vertices u, v of G the uv-th entry of A is
α(e) if e = uv is an edge of G, and 0 otherwise.

If A is non-singular, the inverse of (G,α) is the edge-labeled graph (H, β) whose adjacency
matrix is A−1, the inverse of A. We thus assume that G and H share the same vertex set, and
e = uv is an edge of H if the uv-th entry of A−1 is non-zero, in which case this uv-th entry is
the label β(e) of e. Obviously, the inverse defined this way is unique up to graph isomorphism
preserving edge-labels.

Inverses of edge-labeled graphs as introduced above were studied, for example, in [4, 7, 8, 12].
Edge-labels in [4, 8] were even allowed to be elements of a (not necessarily commutative) ring, and
a formula for an inverse graph to (G,α) was given in both papers in the special case of bipartite
graphs G with a unique perfect matching and with multiplicatively invertible α-labels on matched
edges.

It turns out that the above approach may be extended to edge-labeled graphs with a singular
adjacency matrix by taking the so-called group inverse of a matrix (coinciding with the Moore-
Penrose or Drazin inverse) for symmetric matrices. To introduce it, recall that a real symmetric
n × n matrix A is orthogonally diagonalizable. This means that there is an orthogonal matrix P
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such that PAP T = D, where D = diag(λ1, . . . , λk, 0, . . . , 0) is the diagonal matrix of eigenvalues
of A, with k = rank(A) non-zero eigenvalues λ1, . . . , λk. If we let D∗ denote the diagonal matrix
diag(λ−11 , . . . , λ−1k , 0, . . . , 0), the group inverse or the generalized inverse A∗ of A is simply given
by A∗ = PD∗P T . Observe that both A and A∗ are expressed as conjugates of the respective
diagonal matrices by the same orthogonal matrix P . Note also that A∗ is symmetric and that
A∗ = A−1 if A is non-singular.

We define accordingly the generalized inverse of an edge-labeled graph (G,α) with adjacency
matrix A to be the labeled graph (G∗, α∗) whose adjacency matrix A∗ is the generalized inverse of
A. As earlier, G and G∗ have the same vertex set, and e = uv is an edge of G∗ if and only if the
uv-th entry of A∗ is non-zero, in which case this entry is the label α∗(e) of the edge e. Clearly, G∗

is well defined up to isomorphism preserving edge labels.
An important stream of research in graph spectra is the study of upper and lower bounds on

certain important eigenvalues, such as the largest and the smallest positive ones; interest in this
comes from chemistry and we will give particulars in the next section. In the light of what has been
introduced above, a way to obtain lower bounds on the smallest positive eigenvalue of a graph is
to consider its inverse graph corresponding to the (generalized) inverse of the adjacency matrix of
the original graph. Then, any upper bound of the spectral radius of the inverse graph yields a lower
bound of the smallest positive eigenvalue of the original graph.

In this paper we will determine the (generalized) inverse graphs of cycles. By elementary
algebraic combinatorics is well known that a cycle has non-singular adjacency matrix if and only
if its length is not a multiple of 4, and in such a case one inverts the cycle by simply inverting its
adjacency matrix. For lengths divisible by 4, however, one needs to consider the actual generalized
inverses instead; we will present detailed calculations in both cases.

1 MOTIVATION

Molecules in chemistry are represented by graphs in a natural way. We will focus on organic
molecules, where only carbon atoms and their bonds are represented by vertices and (possibly
multiple) edges; hydrogen atoms are ignored in diagrammatic representations of this type. Suppose
that such a graph has n vertices, so that its n eigenvalues (all real) can be ordered in the form λ1 ≥
λ2 ≥ . . . ≥ λn. By known facts in theoretical chemistry (see e.g. [5]), the energy EH of the highest
occupied molecular orbital (HOMO) corresponds to the eigenvalue λH = λk where k = n/2 for n
even and k = (n + 1)/2 for n odd, and the energy EL of the lowest unoccupied molecular orbital
(LUMO) corresponds to the subsequent eigenvalue λL = λk+1. The correspondence in both cases
means that both EH and EL are multiples of λk and λk+1 by the same multiplicative constant, that
is, EH = βλH and EL = βλL for a constant factor β < 0; see [5] for background in physical
chemistry.

The so-called HOMO-LUMO separation gap is the difference between theEL andEH energies;
by the above we have EL − EH = −β(λH − λL); this difference is non-negative because β < 0.
As regards meaning of this parameter in physical chemistry, by Aihara [1, 2] a large HOMO-
LUMO separation gap implies high kinetic stability and low chemical reactivity of a molecule,
as it is energetically unfavorable to add electrons to a high-lying LUMO orbital. By experimental
observations, the HOMO-LUMO separation gap appears to be decreasing with the size of the graph
(cf. Bacalis and Zdetsis [3]).
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Molecules called properly closed shells in chemistry are distinguished by the property that
λH > 0 > λL, cf. [5]. This property is believed to guarantee stability of carbon molecules known
as fullerenes, represented by planar trivalent graphs with faces of length 5 and 6, cf. [6]. If G is
a graph representing a properly closed shell and if λ+(G) and λ−(G) denote the smallest positive
and the largest negative eigenvalue of G, then the HOMO-LUMO separation gap for the molecule
is a multiple of λ+(G)−λ−(G). With a slight abuse of terminology we may then call the difference
λ+(G)− λ−(G) the HOMO-LUMO separation gap of G and denote it λH−L(G).

Spectra, and hence also the HOMO-LUMO separation gap, of concrete graphs of a manage-
able order can be computationally estimated by means of a range of relaxation techniques available
for determination of the spectral radius. These, however, do not give any information regarding
asymptotic behaviour of spectral characteristics for infinite families of graphs. Moreover, there ap-
pear to be just a few methods for estimating the smallest positive eigenvalue of a matrix, compared
with a larger number of techniques for bounding the largest positive eigenvalue. But by taking
the (generalized) inverse of a particular ‘chemical graph’ one may hope to increase the number of
techniques for estimating its smallest positive eigenvalue by applying bounds on the largest positive
eigenvalue of the inverse graph instead. We reiterate that this is due to the fact that the spectrum of
the inverse graph (classical or generalized) is reciprocal to the spectrum of the original graph, and
so upper bounds of the spectral radius of the inverse graph give lower bounds of the smallest posi-
tive eigenvalue of the original graph.In recent papers [11, 10] Pavlı́ková and Ševčovič investigated
qualitative and quantitative properties of the HOMO-LUMO separation gap in the context of its
maximization with respect to the structure of the graph. They proposed a fast and efficient method
for constructing optimal graphs structure that maximizes the HOMO-LUMO separation gap for a
class of graphs.

2 GENERALIZED INVERSES OF CYCLES

In our analysis we will use the following result proved in [9].

Proposition 2.1 Let A = (aij) and B = (bij) be symmetric n × n matrices. Then, B is the
generalized inverse of A if and only if A and B have the same null-spaces, and every eigenvector
f : [n]→ R of A corresponding to a non-zero eigenvalue of A satisfies∑

j∈[n]

bij
∑
k∈[n]

ajkf(k) = f(i) for every i ∈ [n] . (1)

Let Cn be a cycle of length n ≥ 3 with vertex set V = {0, 1, ..., n − 1}, where each u ∈ V
is joined by an edge to the vertices u − 1 and u + 1 (mod n); because of this modularity we will
identify V with elements of the cyclic group Zn whenever convenient. For an arbitrary τ ∈ n

√
1, the

set of the n complex n-th roots of unity, let fτ be the function mapping V into the field of complex
numbers by the rule fτ (u) = τu for every u ∈ V . Letting N(u) denote the (two) neighbours of u
on the cycle, for all u ∈ V we have∑

v∈N(u)

fτ (v) = (τ−1 + τ)fτ (u) (2)
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so that the real numbers τ−1 + τ for τ ∈ n
√
1 represent all eigenvalues of Cn (including multi-

plicity) and the functions fτ considered as vectors of length n are generators of the corresponding
eigenspaces. Note that this principle extends to any circulant graph, that is, to a Cayley graph of a
cyclic group.

We will assume that rows and columns of the adjacency matrixAn of the cycle Cn is indexed by
elements of V in the natural order. As An is circulant and symmetric, so is its generalized inverse,
which we denote Bn. Any circulant matrix is completely determined by its first row, and hence
to determine Bn it is sufficient to describe its first row. We will begin with the case when An is
invertible, that is, when n is not divisible by 4.

Theorem 2.1 Let n ≥ 3 be not divisible by 4. Then, the entries b0,i (0 ≤ i ≤ n− 1) of the first row
of the inverse Bn of the adjacency matrix An of a cycle of length n are determined as follows:
1. if n ≡ 1 (mod 4), then b0,i = 1/2 for i ≡ 0, 1 (mod 4) and b0,i = −1/2 for i ≡ 2, 3 (mod 4);
2. if n ≡ 3 (mod 4), then b0,i = −1/2 for i ≡ 0, 3 (mod 4) and b0,i = 1/2 for i ≡ 1, 2 (mod 4);
3. if n ≡ 2 (mod 4), then b0,i = 0 if i is even, and b0,i = (−1)(i−1)/2/2 if i is odd.

Proof. By a straightforward calculation one can verify that AnBn = BnAn = I . 2

Example 2.1 Let us consider a cycle with the lenght n = 3, 5, 6. In this cases the lenght is not
dividable by 4. On the figures bellow you can see a cycle, an adjecency matrix, an inverse matrix
and an inverse graph of the cycle.

1/2

1/2

1/2

-1/2

-1/2
-1/2

A3 =

 0 1 1
1 0 1
1 1 0


The cycle C3 and its adjacency matrix.

1/2

1/2

1/2

-1/2

-1/2
-1/2

B3 =
1

2

 −1 1 1
1 −1 1
1 1 −1



The graph C−13 and its adjacency matrix.

1/2

1/2

-1/2

1/2

-1/2

1/2

1/2

1/2
1/2

1/2
-1/2

-1/2

1/2

1/2

-1/2
-1/2

-1/2

A5 =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0


The cycle C5 and its adjacency matrix.
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1/2

1/2

-1/2

1/2

-1/2

1/2

1/2

1/2
1/2

1/2
-1/2

-1/2

1/2

1/2

-1/2
-1/2

-1/2

B5 =
1

2


1 1 −1 1 1
1 1 1 −1 −1
−1 1 1 1 −1
−1 −1 1 1 1
1 −1 −1 1 1



The graph C−15 and its adjacency matrix.

1

1 111 1 11
-1

1

1

1

1

-1

-1

1111

A6 =


0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0


The cycle C6 and its adjacency matrix.

1

1 111 1 11
-1

1

1

1

1

-1

-1

1111

B6 =


0 1 0 −1 0 1
1 0 1 0 −1 0
0 1 0 1 0 −1
−1 0 1 0 1 0
0 −1 0 1 0 1
1 0 −1 0 1 0


The graph C−16 and its adjacency matrix.

We continue with the case when n is divisible by 4. In this case the adjacency matrix An of the
cycle Cn is singular, so we determine the first row of its generalized inverse matrix Bn.

Theorem 2.2 Let n ≥ 4 be divisible by 4. Then, the entries b0,i (0 ≤ i ≤ n − 1) of the first row
of the generalize inverse Bn of the adjacency matrix An of a cycle of length n satisfy b0,i = 0 for i
even, and for odd i one has

b0,i = (−1)
i−1
2

(
1

2
− i

n

)
if 1 ≤ i ≤ n

2
− 1 , and b0,i = b0,n−i if i >

n

2
. (3)

Proof. In the notation introduced above, we saw at the beginning of this section that for every
τ ∈ n
√
1 and for the eigenvector fτ of the cycle Cn corresponding to the eigenvalue τ+τ−1 we have

fτ (i) = τ i; in particular, fτ (0) = 0 for evert τ ∈ n
√
1. Now, τ + τ−1 = 0 if and only if τ 2 + 1 = 0,

that is, if and only if τ is one of the two primitive 4-th roots of unity; note that here we use the
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assumption that n is a multiple of 4. Let n
√
1∗ be the set n

√
1 with the two primitive 4-th roots of

unity removed. Then, for every τ ∈ n
√
1∗ we have, by the equation (2) with N(i) = {i− 1, i + 1}

mod n, the following equation∑
i

b0,i(τ
i−1 + τ i+1) = 1, τ ∈ n

√
1∗ (4)

By Proposition 2.1, by uniqueness of a generalized inverse and by its circularity, our assertion
will be proved if we show that the coefficients b0,i given by (3) satisfy the equation (4) and that the
matrices An and Bn have the same null-spaces.

We begin by showing that the coefficients b0,i from (3) satisfy (4). This is equivalent to proving
that

b0,1(τ
0 + τ 2) + b0,3(τ

2 + τ 4) + · · ·+ b0,n−1(τ
n−2 + τn) = 1 (5)

for every τ ∈ n
√
1∗. Rearranging terms in (5) yields

(b0,1 + b0,n−1) + (b0,1 + b0,3)τ
2 + (b0,3 + b0,5)τ

4 + · · ·+ (b0,n−3 + b0,n−1)τ
n−2 = 1

and using the definition of b0,i from (3) for odd i we obtain after further rearrangements

τ 2 − τ 4 + τ 6 − τ 8 ± . . .− τn−4 + τn−2 = 1 (6)

But on the left-hand side of (6) we have a sum of the first k = (n−2)/2 terms of a geometric series
aj = a1q

j−1 with first term a1 = τ 2 and quotient q = −τ 2. Since 1 − q = 1 + τ 2 is non-zero for
τ ∈ n
√
1∗ we may use the formula

∑k
j=1 aj = a1(1− qk)/(1− q) in this case, which is easily seen

to evaluate to 1, the value on the right-hand side of (6). This establishes (4) for τ ∈ n
√
1∗.

It remains to show that the matrices An and Bn have the same null-spaces; by dimension of
the eigenspaces of An and Bn corresponding to non-zero eigenvalues it is sufficient to show that
the null-space of An is contained in the null-space of Bn. But observe that the null-space of A is
generated by the two independent vectors ftau(j) = τ j for τ a primitive 4-th root of unity. This
means that the two vectors evaluate (for j = 0, 1, . . . , n− 1) for the two values of τ to

(1, τ,−1, τ−1, 1, τ,−1, τ−1, . . . , 1, τ,−1, τ−1) (7)

To prove that the vector given by (7) is in the null-space of the circulant matrix Bn it suffices to
show that every cyclic shift of this vector is orthogonal to the first row of Bn, that is, to the vector
(b0,i)

n−1
i=0 given by (3). But observe that the latter vector has, for n = 4m, the following structure:

(0, b0,1, 0, b0,3, . . . , 0, b0,2m−3, 0, b0,2m−1; 0, b0,2m−1, 0, b0,2m−3, . . . , 0, b0,3, 0, b0,1) (8)

Orthogonality of the vectors (7) and (8) now follows from the fact that the primitive 4-th roots τ of
unity considered here satisfy τ + τ−1 = 0. Orthogonality of the vector in (8) to the vector obtained
from (7) by the cyclic shift by one coordinate to the right follows easily by the structure of (8). The
remaining two cyclic shifts of the vector (7) to be checked reduce to the previous two cases. This
completes the proof. 2

We illustrate theorem 2.2 on example.
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Example 2.2 Let n = 8; in this case the length of the cycle is divisible by 4, so adjacency matrix
of the cycle is singular.

3/83/8 3/8

3/8

3/8

3/83/8

3/8

3/8

3/8

3/8

3/8

3/8

3/8

3/8

3/8

3/8

3/8
-1/8

-1/8

-1/8

-1/8 -1/8

-1/8-1/8

-1/8

A8 =



0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0


The cycle C8 and its adjacency matrix.

Generalized inverse matrix B8 of the adjacency matrix A8 is

3/83/8 3/8

3/8

3/8

3/83/8

3/8

3/8

3/8

3/8

3/8

3/8

3/8

3/8

3/8

3/8

3/8
-1/8

-1/8

-1/8

-1/8 -1/8

-1/8-1/8

-1/8

B8 =
1

8



3 0 −1 0 −1 0 3 0
0 3 0 −1 0 −1 0 3
3 0 3 0 −1 0 −1 0
0 3 0 3 0 −1 0 −1
−1 0 3 0 3 0 −1 0
0 −1 0 3 0 3 0 −1
−1 0 −1 0 3 0 3 0
0 −1 0 −1 0 3 0 3


The graph C−18 and its adjacency matrix.

CONCLUSION

The result presented in this this paper is an example how to calculate generalized inverse matrices of
adjacency matrices of graphs. We demonstrated the approach on calculating generalized (and also
classical) inverse matrices to those obtained from cycles. These appear to be a first and interesting
non-trivial example of this situation which may be of interest from the point of view of applications
in chemistry. Constructions of the corresponding (edge-labeled) generalized inverse graphs is an
obvious consequence of our results. We note that the method used in this paper can be extended to
other families of graphs with singular adjacency matrices.
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Abstract: Lanchester’s equations and their solutions, as continuous differential equations, 

have been studied in first decades of XX century. New approach with the use of the discrete 

form of Lanchester’s equations, which represent by dynamical systems of difference 

equations was proposed at the beginning of XXI. This was caused both by the desire to build 

more adequate models and the improvement of computer technology. We illustrate these 

models, their solutions and their comparability using historic combat examples, and some 

student case studies. We show how these well-studied models can be applied in a completely 

different field - the modeling of economic dynamics problems. We formulate new statements 

of problems. Namely, models with time-delay argument.  

 

Keywords: Lanchester’s models, continuous and discrete forms, control, economic models, 

behavior of solutions. 

 

INTRODUCTION 

 

The scope of mathematical modeling application is constantly expanding and deepening. 

Constantly complicated as the well-known classical statements of problems for the purpose of 

their greater adequacy of reality, and absolutely new previously unexplored models appear [1-

4]. This process does not depend on what tasks it is necessary to investigate: technical, 

engineering, social, economic or other. But no matter how the process evolved, still most of 

the mathematical models are representable in the form of systems of ordinary differential 

equations (ODE), partial differential equations (PDE), difference equations (DDE), and 

functionally differential equations (FDE) [5-7]. Because, in the majority, they allow an 

analytical solution. And if it can’t be found, then with success to solve similar problems you 

can approach using numerical methods and computer technology [8,9]. 

We will focus our attention on one of the most acute social phenomena - military actions. And 

let us consider one of the simplest formulations of similar problems. In the most general terms 

Lanchester model [10-14] can be described by the equation: 













hgxfyxey
dt

dy

dcybxyax
dt

dx

           (1) 

Here a  and e  - constants that determine the rate of non-combat losses; b  and f  - rate 

losses due to the action area; c  and g  - losses from exposure to the enemy at the forefront; 

d  and h  - reserves approaching or receding [15]. There are next more wellknown models. 

1. The model is actually Lancaster (there are only coefficients b  and f ). In this case, the 

number of victims is proportional to the number of meetings between the individuals of the 

opposing parties (the product of the number of parties). The most relevant such interaction is 
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when two parties are located in the common territory (partisan war, repression, hostility of 

two ethnic groups, etc.) 

2. Model of Osipov (there are only coefficients c  and g ). The number of victims is 

proportional to the number of opposite parties. This may be a classic military engagement 

when the two sides come into contact only at the forefront. 

3. Peterson model (coefficients a  and e ). The number of victims is determined by the 

number of each party. This may be a model of the Cold War, for example, when more of its 

submarines are fighting alert, the more they die. 

4. Brekney Model (coefficients a  and f  , or b  and e ). Victims of one side are proportional 

to the number of meetings, and the other side - the number of its opponent. The model was 

created under the impression of fighting in Vietnam and quite satisfactorily describes the 

conflict in which one side is a classic battle, and the second - a guerrilla. 

The greatest applicability Lanchester equation found in the form [10-12]: 













hgxey
dt

dy

dcyax
dt

dx

            (2) 

 

1  MAIN PART 

1.1  Combat models in continuous case 

 

Let the fighting take two sides x  and y . Their size at a time t , which is measured in days, 

starting from the first day of combat operations, denote through )(tx  and )(ty  respectively. 

We also assume, according to [10-12,16] that )(tx  and )(ty  change continuously and, 

moreover, they are differentiated as functions of time. Of course, these assumptions are a 

simplification of the real situation, because )(tx  and )(ty  are integers. But at the same time 

it is clear that, with a sufficiently large numerical composition of each side, an increase in the 

number of one or two persons gives from a practical point of view an infinitesimal value 

compared to the already existing composition. Therefore, it can be assumed that at small time 

intervals the numerical composition also varies by small numbers (not integers). These 

conditions, of course, are not enough to make specific formulas for )(tx  and )(ty  as 

functions of time t . However, we can specify a number of factors that allow us to describe 

the rate of change in the number of opposing sides. 

Further, we will use the following notation: a ,b , c ,d , g ,h  - nonnegative constants, which 

characterizing the rate of influence of various factors on the losses in manpower and both 

parties )(tx  and )(ty ; )(tP  and )(tQ  - terms taking into account the possibility of an 

approach to strengthening forces during the day; 0
x , 0

y  - the number of forces before the start 

of combat operations. We will demonstrate three models built by Lanchester.  

The first of these is the description of the fighting between regular troops, so-called “direct 

fire” model, and it has the form: 

 













)(

)(

tQdycx
dt

dy

tPbyax
dt

dx

          (3)  
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In the future, this system will be called the differential system of type (A). 

The second model describes the fighting between partisan connections (“guerilla warfare”). 

We will call it a differential system of type (B). 













)(

)(

tQhxydy
dt

dy

tPgxyax
dt

dx

          (4)  

 

Finally, the third model (“mix warfare” model), which will be called differential system type 

(C) describes a mixed type of fighting, involving both regular units and partisan 













)(

)(

tQdycx
dt

dy

tPgxyax
dt

dx

          (5)  

We will illustrate the above systems. 

Quadratic law (equation type A). Suppose that the regular forces of two opposing forces are 

fighting in the simplified situation, where the losses are not associated with such actions, is 

absent. And then, if both sides do not receive reinforcements, the mathematical model is 

reduced to the following form: 

,by
dt

dx
  cx

dt

dy
           (6) 

Dividing in (6) the second equation by first, we obtain that 

by

cx

dx

dy
                    (7)  

Integrating the differential equation (7), we obtain at equality 

])([])([ 2

0

22

0

2 xtxcytyb                 (8)  

The relation (8) explains why the system (6) corresponds to a quadratic law model. If denoted 

by K  a constant 
2

0

2

0
cxby  ,  

Kcxby  22
                    (9)  

then the equation obtained from equation (8), defines a hyperbole (a pair of straight lines if 

0K ), and we can more exactly classify the system (6). It is such a system that can be 

called a differential system with hyperbolic law. 

In fig.1 we present the geometric interpretation of functional dependence for different value 

K . 
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Fig.1. The balance of the forces of the problem type A. 

 

For answer the question of who wins in the constructed model (6), we will firstly agree to say 

that the party )(tx  wins (hence )(ty ) if it is the first to destroy the fighting forces of the 

party )(ty  (respectively )(tx ). From the subsequent analysis, it is not difficult to see the 

effects of quadratic dependence. For example, the change in the attitude of forces from 

1
0


x

y

  
to 2

0


x

y
 gives a fourfold advantage to the forces )(ty  

Linear law (equation type B). The equation of dynamics which simulating the combat actions 

of the two opposing sides can be easily solved, if the losses are excluded, not related to 

military actions, and neither side receives reinforcements. Under such restrictions, the 

differential system of type (B) takes the form 

gxy
dt

dx


   
hxy

dt

dy
 .         (10)  

Having made mathematical calculations similar to the previous one, we can make the plot of 

linear dependence of forces at different value Lhxgy   (See Fig.2.) 

Parabolic law (equation type C). In model (C) guerrilla forces resist regular parts. We will 

again make simplifying assumptions that the two opposing sides are not provided with 

reinforcements and do not bear losses not related to military action. In this case, we have a 

differential system of the type 

gxy
dt

dx
    cx

dt

dy
           (11)  

In accordance with the previous calculations, denoting by 
0

2

0
2cxgyM  , we obtain plot 

of parabolic law (Fig.3). 

                       
Fig.2. The balance of the forces of the 

problem type B. 

Fig.3. The balance of the forces of the 

problem type C 
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1.2  Combat models in discrete form 

 

Combat is fought over continuous time, there are typically discrete starting, pause, and 

stopping points. Often models of combat employ discrete time simulation. Dynamical systems 

can always be solved by iteration, which make them quite attractive for use in both computer 

modeling and simulations of combat. However, we can gain some powerful insights with 

those discrete equations that have analytical solutions. This particular dynamical system of 

equations for Lanchester’s direct fire model does have an analytical solution. In this directions 

good results (analytical and computer simulation) were obtained at [17,18]. 

Quadratic law (type A). In order to obtain a discrete model for the system (3) we use the 

simplest method of Euler's approximation by writing the usual derivatives as discrete values: 

t

yy

t

yy
ytf

dt

dy
nnnn

t
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
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 
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,),( 1
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


      .),(

1 nnnn
ytftyy 


. 

Thus, according to [17,18], the continuous model (3) can be approximated to the form: 

 









0

0

)0(),()()()()1(

)0(),()()()()1(

YYtQndYncXnYnY

XXtPnaXnbYnXnX
 

Assume that the regular forces of the two opposing forces conduct hostilities in a simplified 

situation where losses that are not related to such actions are absent. And then, if both sides do 

not receive reinforcements, the mathematical model is reduced to the following form 









).()()1(

),()()1(

nxcnyny

nybnxnx
           (12) 

Further, the coefficients b  and  c  we will record as that 
1

k  and 
2

k , that is, as indicators of 

the rate of combat losses. 

Let us rewrite the system (12) in the matrix form: 

.,
1

1
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          (13)  

We will use the matrix solution method using eigenvalues and eigenvectors to find the 

analytical solution of equation (13). We construct the characteristics polynomial and calculate 

an eigenvalues    

212.1
1 kk

 
Under some assumption [17,18] we will obtain correspondent eigenvectors 
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Now, knowing all the parameters, we can write a solution of the system (12) ((13)) in the 

form: 
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It's easy to make sure that the conditions for winning the party X  are the next: 

,
01021

ykxkk   where 
0

x , 
0

y  - the number of forces before the start of combat 

operations (initial values). Similarly, however with the opposite sign (<) - a condition of 

winning the side Y . If, however the sign (=), we will have a draw. 

We find the correlation of the forces of the parties. One of own vectors is .
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Hence        
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Having simplified the previous relations and solved relative x, we get a line:  

 

x
k

kk
y

1

21 . 

Formally, all the lines thus obtained will be invested in the scheme of Fig. 1 

 

1.3  Illustrative examples 

 

We will use descreete Lanchester model for calculate some examples. 

 

Example 1. (Historical) The Battle of Trafalgar [17,19,20]. 

In classical naval warfare, two fleets (Blue against Red) would sail parallel to each other (see 

Fig. 4) and fire broadside at one another until one fleet was annihilated or gave up. The Blue 

fleet represents the British and the Red fleet represents the French-Spanish fleet. In such an 

engagement, the fleet with superior firepower will inevitably win. To model this battle, we 

begin with the system of difference equations that models the interaction of two fleets in 

combat. 

 
Fig. 4. 
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We iterate these dynamical systems equations to obtain the numbers in the table to determine 

who wins the engagement. We graph this information as illustrated in Fig. 5. 

But, history gave us the opposite result. Admiral Nelson defied conventional warfare, ordered 

his captains to split the British fleet and spear the enemy’s line, called “crossing the T,” to 

create a “pell-mell battle,” which has been called the “Nelson Touch.”  

 

 
Fig. 5. [17] Battle of Trafalgar under normal battle strategies  

showing the victory of the French-Spanish fleet.  

In this example, Admiral Nelson has 27 ships  

while the allied French and Spanish fleet had 33 ships.  

As we can see, Admiral Nelson is expected to lose all 27 of his ships 

 while the allied fleet will lose only about 14 ships. 

 

We can test this new strategy that was used by Admiral Nelson at the Battle of Trafalgar using 

our discrete combat model. Admiral Nelson decided to move away from the course of linear 

battle of the day and use a “divide and conquer” strategy. Nelson decided to break his fleet 

into two groups of size 13 and size 14. He also divided the enemy fleet into three groups: a 

force of 17 ships (called B), a force of 3 ships (called A) and a force of 13 ships (called C). 

We can assume these as the head, middle, and tail of the enemy fleet. His plan was to take the 

13 ships and attack the middle 3 ships. Then have his reserve 14 ships rejoin the attack and 

attack the larger force B, and then turn to attack the smaller force C. How did Nelson’s 

strategy prevail? Assuming all other variables remain constant other than the order of the 

attacks against the differing size forces, we find the Admiral Nelson and the British fleet now 

win the battle sinking all French-Spanish ships with the British fleet having 13 or 14 ships 

remaining. The easiest method to obtain these results ware by iteration. We used three battle 

formulas. We stop each battle when one of the values gets close to zero (before going 

negative). This is displayed in Fig. 6. 
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Fig. 6. [17] British prevail with Nelson’s new strategy 

 

 

Example 2. The Tank battle (all parameters takes from [21]). 

Side 1 (Red): 800 tanks, that drive the defense ( 1
1
k ). Coefficient of effectiveness 

02.004.05.011 c  

Side 2 (Blue): 2000 tanks, that drive the attack ( 8.0
1
k ).Coefficient of effectiveness 

0016.004.05.08.01 d  
The battle takes place fog: ( 5.0

3
k ).  Second World War ( 04.0C ). 

Task: find duration of the battle?  

Using the above results and Maple Tools we obtain next plots 

 
Fig. 7. Illustration balance of forces to Ex.2. Fig. 8. Illustration number of vehicles in  

time for Ex.2 

 

From Fig.8 we can see that the duration of battle will be 27 days. 

 

Example 3. (“mix warfare” model) [18,21] 

Side 1 (Red): 800 defense soldiers. 054.012.03.015.1 c  

Side 2 (Green): 2000 guerilla, which drive the attack. 

00064.09212.03.08.01 d  
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Fig. 9. Illustration of the number of combat units to Ex. 3 

Guerilla (Green) have no chances, the battle ended in 0.9 days. 

 

1.4  Comparison between differential and difference form of Lanchester’s model 

 

We propose an Example to illustrate such compere [17,18]. 

Example 4. Let's consider the battle between red (R), and the blue (B) side 

A) Discrete model 
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Fig. 10. Illustration balance of forces to Ex.4 Fig. 11. [17,18]  Illustration of the number of 

combat units to Ex.4 

 

B) Continuous model. Denote )(tx  - red (R), and )(ty   the blue (B) 

,1.0 y
dt

dx
     

x
dt

dy
05.0

 
,100)0( x
   

50)0( y
 

We obtained the system solution 
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)707.0exp(355.85)0707.0exp(644.14)(  ttx
 )707.0exp(355.60)0707.0exp(355.10)(  tty
 

 

We can compeare these two results by plots (Fig. 12). 

   
Fig. 12. Solution plots of Blue vs Red forces 

via differential equations and difference equations 

showing graphically that they are practically the same 
 
 

2  NEW FILD OF APPLICATION LANCHESTER’S COMBAT MODELS 

2.1  Combat models as a task of control problem 
 
Let's give one of the tasks of optimal distribution of resources in dynamic systems on the 
example of a model of battle of two parties [22]. The dynamics of competitive production of 
similar products from the same raw materials in the common market can be described by the 
systems 

)(

)(

1

2

2

1

tvax
dt

dx

tubx
dt

dx





, 

де )(1 tx  – quantity of goods produced by the party A  in time ],[ 10 ttt , )(2 tx  – quantity 

of goods produced by the party B ; )(),( tvtu  – the rate of depreciation (or the possibility 

of obtaining raw materials from other sources) for A  and B  accordingly; ba,  – average 

production efficiency of the parties A  and B  accordingly; 01 ttT    – the given time of 

the production process. 
Let's be known:  

0

202

0

101

)(

)(

xtx

xtx




 

and value )(tv . 

The tasks of optimal distribution of resources: 

need to be find the control function )(0 tu   
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with restriction:  
1

0

)(,)(0
t

t

udttuutu , ( uu  ,  – given values), 

such that the selected quality functional ))(( tuQ  reached its extremum. 

As the criterion for the best control can be selected definite purpose of competitive 
production, for example: 

u
txQ min)( 12  – at the end of the manufacturing process, the party B  has 

manufactured and launched on the market fewer products;  

u
txQ max)( 11  – a purpose of A  - to produce and realize the largest quantity of 

products on the market by the end of the production process. 

We can offer other some criteria of optimality. 

 

2.2  Time delay in combat models 

 

In real processes, there are almost always elements that cause late effects. Physical and 

technical reasons for delays may include transport delays, delays in information transmission, 

delays in decision making, and so on. Other factors are also possible. Therefore, the 

mathematical models represented by functional-differential equations describe the most part 

of the dynamic objects more adequately [7,23-28]. 

In real life at the confrontation between two hostile parties, the side that starts the second 

always does it not simultaneously with the first one. That is, the answer comes with some 

delay in time. As far as the authors are concerned, to date, such situation is not modeled in 

terms of models of combat operations of Lanchester type, or others. 

For simplicity of presentation, we return to “direct fire” model (3) and rewrite it in the next 

form 

 


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tPtbytax
dt

tdx





 
 

Here 0 const  - time lag corresponding to a delayed reaction. 

In this case, under the same restrictions, system (6) can be represented as follows 

 


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)(
)(

),(
)(
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

tcx
dt

tdy

tby
dt
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It is well known that the presence of lag in the system of equations can radically change the 

behavior of the solutions and significantly affect the quality of the phase portrait [9,10]. 

 

2.2.1  General solution of Cauchy problem for linear non-homogeneous systems with 

time delay 
Following the results of [28], we consider a linear inhomogeneous system with a time-delay 

argument in the form 
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     tftBxtx   ,                                                    (15) 

The solution of the Cauchy problem of system (15) has the form of a sum of two solutions 

 

     txtxtx
c


0

. 

Where 

0
x ( t ) a solution of the Cauchy problem for a homogeneous system with delay satisfying 

given next conditions 

    tBxtx ,    ttx 
0

, 0 t  

 tx
c

 - a solution of the Cauchy problem for a nonhomogeneous system with the next initial 

conditions 

  0tx
c

, 0 t  

 

And it can be finally represented in the form 

 

          ,,exp,exp
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 dssstBtBtx                    (16) 

where the matrix function  ,,exp tB
 , which called “delay exponential”, has the form 
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When 0 , convergence takes place on the interval 0t  

 

   BtetB 


,explim
0
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
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t
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Remark. In the initial conditions of the integral representation (3), it is necessary to have the 

continuous differentiability of the initial vector function )(t . If we take the integral by parts, 

we obtain integral representation of the solution 

    dssstBtBtx )(2exp)0(,exp)(
0




 


                             (18) 
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For a partial solution of a non-homogeneous system, the Cauchy formula holds. The solution 

of the non-homogeneous system (15), which satisfies the zero initial conditions,  

 

0)( tx , 0 t , 

has the form 

  
t

dssfstBtx
0

0
)(,exp)( 


.                                (19) 

Using relations (18), (19) we can return to our Lanchasters models.  

 

2.2.2  Direct fire Lanchesters type model with time-delay argument 

Let us consider the next modification of the model type A. 
 

    dtbytx   , 

    etcxty   . 
 

Here b , c , d , e  - are positive constants. 

In this case matrix B  and vector f  for the system (15) have the next form 
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For the matrix B  we can simply calculates its power: 
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Let is consider relation (3), and will make change variable   st . Than the 

boundaries of the integral will be the next ts   ,   ts 0 . Let is 

  1 ntn , than   1 ntn  and the relation (3) we can rewrite as  
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Since the vector function  tf  is a constant, than 
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Let will make the same change of variable   st , than   ts 0 , 
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And since the “delay exponential” is the continuous function, finally, we will have 
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Even more significant is the fact of belated reaction of one of the parties, that is, the presence 

of time-delay argument in “guerilla-warfare” and so-called “mix warfare” models. 

Consideration of the issues posed in this section goes beyond of the scope this article, and it is 

interesting for future scientific research. 
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CONCLUSION 

 

The article examines various aspects of the combat operations which described by Lanchester 

type models. The first part (Ch.1.1) is devoted to classical problems in a continuous case. The 

next part (Ch.1.2) deals with more advanced options for presenting similar tasks. On the 

example of “direct fire” model, the problem is formulated in a discrete case. It is shown that 

in this case there exists both analytical and numerical coincidence of results. The following 

(Ch.1.3) are historical and student examples of solving such problems. In fact, the entire first 

chapter is of interest primarily as a possible part of text-book for students, with the aim of 

demonstrating various mathematical approaches to solve specific problems, and to teach their 

of this methodology. The second part of the work is of interest in sense of future practical 

(transfer of known results from one branch to another) and scientific research (qualitative 

research of warfare models or models of dynamic competition in the market) in the case of 

describing these processes in terms of functional differential equations with a deviation 

argument. 
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Abstract: First we distinguish between curvature homogeneity and homothety curvature homo-
geneity. Curvature homogeneous manifolds are Riemannian spaces whose curvature tensor is, in
some sense, “the same” in all points, while for homothety curvature homogeneous spaces, cuva-
tures (and their covariant derivatives) in two points are related in a more general way. Trivial
examples of curvature homogeneous spaces are homogeneous spaces and connected locally homo-
geneous manifolds. First non-trivial examples were discovered by K. Sekigawa and for a long time,
only a few classes of such examples which are not locally homogeneous have been known. We study
here an interesting class of metrics, given in arbitrary dimension, which are not locally homoge-
neous, and which generalize a 3-dimensional example originally given by K. Sekigawa. We also
examine examples of ”Sekigawa type” from the view-point of homothety curvature homogeneity.

Keywords: Riemannian manifold, curvature tensor, curvature homogeneous manifold, locally ho-
mogeneous space.

INTRODUCTION

The notion of curvature homogeneous space was introduced by by I. M. Singer [24] in 1960 in his
study of (locally) homogeneous Riemannian manifolds. Singer proved that a Riemannian space
is (locally) curvature homogeneous if and only if the Riemann curvature tensor and its covariant
derivatives up to some order kM + 1 are the same at each point. The number kM , the so-called
Singer number, depends on the manifold and is always smaller (or equal) than n(n − 1)/2 (where
n = dimM ). A better estimate was later given by Gromov, namely kM ≤ 3n/2− 1.

Curvature homogeneous manifolds are Riemannian or pseudo-Riemannian manifolds ([18])
whose curvature tensor of type (0,4) is “the same” at all points in some sense (in the coordinate ex-
pression, have the same components). Homogeneous spaces and connected locally homogeneous
manifolds belong to trivial examples of such spaces. First non-trivial examples were discovered
by K. Sekigawa. For a long time, only sporadic classes of examples have been known of curva-
ture homogeneous spaces which are not locally homogeneous. The first classification results for
dimension 3 were published in [12], [2], [17], and classes of explicit examples were found in [26]
and [13]. We study here an interesting class of cuvature homogeneous metrics, given in arbitrary
dimension, which are not locally homogeneous, and which generalize an example posed originally
by K. Sekigawa in dimension 3, [21], [22], [23]. We examine examples of Sekigawa type from the
view-point of homothety curvature homogeneity.
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1 CURVATURE HOMOGENEOUS AND LOCALLY HOMOGENEOUS SPACES

Let M denote a (smooth) n-dimensional manifold, TM its tangent bundle, TpM the tangent space
in p ∈M , and X (M) the module of smooth vector fields of M . By (M, g) we mean a smooth Rie-
mannian manifold together with a positive metric g; the corresponding Riemannian (Levi-Civita)
connection of (M, g) is denoted by ∇; ∇g = 0 holds, and the torsion tensor vanishes. We denote
here by R the curvature tensor in type (1,3) of the manifold (M,∇), that is, for any triple of vector
fields X, Y, Z ∈ X (M), R(X, Y )Z = [∇X ,∇Y ]Z−∇[X,Y ]Z holds. If p ∈M then Rp denotes the
value of R at the point p.

The curvature tensor R in type (0,4) of the Riemannian space (M, g) is related to the tensor
R by means of the metric tensor: for vector fields X, Y, Z,W from X (M), R(X, Y, Z,W ) =
g(R(X, Y )Z,W );Rp denotes its value in p ∈M .

A smooth Riemannian manifold (M, g) is called curvature homogeneous if it satisfies the con-
dition

P(1) : for any pair of points p and q in M , there exists a linear isometry F : TpM → TqM such
that its pullback F ∗ satisfies F ∗(Rq) = Rp.

That is, F ∗(Rq)(X, Y, Z,W ) = Rq(FX,FY, FZ, FW ) for vector fields X , Y , Z, W on M ; [24],
[3], [15], [16], [29], [30] and the references therein.

The study of curvature homogeneous spaces was initiated by I.M. Singer in 1960, and at the
beginning, only trivial examples were known. It took some time till classes of examples were
constructed of curvature homogeneous spaces which are not locally homogeneous. Recall that a
Riemannian manifold (M, g) is a locally homogeneous space if the pseudogroup of local isometries
of the manifold acts transitively on it. (M, g) is locally homogeneous if and only if there exists a
symmetric linear connection ∇̂ satisfying ∇̂g = 0, ∇̂T = 0 and ∇̂R = 0. In other words, there
is a metric connection with parallel torsion and curvature. Such a connection is called Ambrose-
Singer connection (AS-connection) in [28]. Recall that the torsion tensor T of (M, ∇̂) is the tensor
field of type (1,2) given by T (X, Y ) = ∇̂XY − ∇̂YX − [X, Y ] for X , Y ∈ X (M). To each
AS-connection it is attached an algebraic object, an infinitesimal model. Vice versa, the so-called
Nomizu construction associates to each infinitesimal model, and therefore to each AS-connection,
a particular Lie algebra g, its subalgebra h and a reductive decomposition g = V ⊕ h; h is a
subalgebra of g satisfying [h, V ] ⊂ V . Let G be the simply connected Lie group with the Lie
algebra g. Let H be the connected Lie subgroup of G with the Lie algebra h. If H is closed in
G then the infinitesimal model is called regular. Due to the assumptions for the corresponding
Lie groups G,H just mentioned, we can construct the homogeneous space G/H and show that the
locally homogeneous space (M, g) is locally isometric toG/H endowed with a suitableG-invariant
Riemannian metric; the converse also holds, [28].

If the Riemannian manifold is a complete locally homogeneous space then the universal Rie-
mannian covering of the manifold is globally homogeneous. If this is the case then (M, g) is
locally isometric to a Riemannian homogeneous space G/H endowed with a G-invariant metric
(H is a closed Lie subgroup of the Lie group G), [28]. But this is no longer true if we drop the
completeness: there exist noncomplete Riemannian manifolds that are not locally isometric to any
Riemannian homogeneous space, [28].

I.M. Singer also introduced in [24] the following condition. A space (M, g) is said to be curva-
ture homogeneous up to order r if it satisfies the property P(r) where
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P(r) : For every p, q ∈ (M, g) there exists a linear isometry F : TpM → TqM
such that F ∗((∇kR)q) = (∇kR)p for k = 0, 1, . . . , r.

It is obvious that connected locally homogeneous spaces are curvature homogeneous of all
orders. On the other hand, as we already mentioned, the main result of [24] says that there is
always a finite number kM ≤ n(n − 1)/2 such that, if (M, g) is curvature homogeneous up to
order kM , then it is automatically locally homogeneous. See also [19] and [3]. In contrast, we are
interested here in spaces that are not locally homogeneous.

By a model space we mean a connected homogeneous space (M̄, ḡ), that is, a Riemannian
manifold with transitive isometry group. We say that a Riemannian manifold (M, g) has the same
curvature tensor as the model space (M̄, ḡ) if for each point p ∈ M , there is a linear isometry
F : TpM → ToM̄ such that F ∗(R̄o) = Rp where o is a fixed point of M̄ .

Note that the above concepts can be formulated even in the case of affine manifold (M,∇).
A symmetric (=torsion-free) affine connection ∇ on a (connected) manifold M is locally homoge-
neous if and only if for every pair x, y ∈ M there are neighborhoods U of x and V of y and there
exists an affine transformation f : (U,∇|U)→ (V,∇|U) sending x to y, f(x) = y. We say that∇ is
locally symmetric if and only if∇R = 0. A locally symmetric connection is locally homogeneous,
a locally homogeneous connection is curvature homogeneous of any order, [20].

2 CURVATURE HOMOGENEITY IN DIMENSION 3

In what follows, metrics and functions are supposed to be real analytic.
Let Rijk` be the components of R with respect to any local moving frame, let %jk denote com-

ponents of the Ricci tensor, and let τ be the scalar curvature (which arises by contraction of the
Ricci tensor).

Let Cijk` denote components of the Weyl tensor of conformal curvature which is defined by
(cf. [7], [25], [4], [27] and the heading “Weyl tensor” in WIKIPEDIA; note that the formula in
different sources might be written with different signs depending on the sign convention used for
curvature):

Cijk` = Rijk` +
1

n− 2
(gikRj` − gi`Rjk + gj`Rik − gjkRi`)

+
1

(n− 1)(n− 2)
(gi`gjk − gikgj`).

(1)

As well known, in dimension 3, the Weyl tensor vanishes, C ≡ 0, [25]. Therefore components of
R can be expressed from the above formula as

Rijk` =
1

n− 2
(gik%j` − gi`%jk + gj`%ik − gjk%i`)

+
τ

(n− 1)(n− 2)
(gi`gjk − gikgj`).

(2)

The curvature tensor R of a 3-dimensional Riemannian manifold is uniquely determined by the
corresponding Ricci tensor % and the metric g, as we can see from the above formula (2). As a
consequence, we get
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Proposition 1 A Riemannian manifold (M, g) is curvature homogeneous if and only if the Ricci
eigenvalues %1, %2, %3 are constant at all points.

The following results can be proved using Cauchy-Kowalewski theorem:

Theorem 1 ([12]) All real analytic Riemannian manifolds with the prescribed constant Ricci eigen-
values %1 = %2 6= %3 depend, up to a local isometry, on two arbitrary (real analytic) functions of one
variable.

Theorem 2 ([17]) All real analytic Riemannian manifolds with the prescribed distinct constant
Ricci eigenvalues %1>%2>%3 depend, up to a local isometry, on three arbitrary (real analytic)
functions of two variables.

On an open subset of R3, the prescribed triplets of constant Ricci eigenvalues can be realized
only on spaces which are not locally homogeneous. Explicit examples of this kind can be found
in [12] and [13]. The classification of all triplets of distinct real numbers which can be realized as
Ricci eigenvalues on a 3-dimensional locally homogeneous space was made in [14]. We conclude
that the Riemannian spaces (M, g) with prescribed constant Ricci eigenvalues are ”usually” not
locally homogeneous, with some rare exceptions. In [13], the authors constructed so-called gener-
alized Yamato examples which are explicit for each choice of the triplet %1 > %2 > %3 of prescribed
Ricci eigenvalues. See [26] for the original construction by K. Yamato where some restrictions are
put on the triplets %1 > %2 > %3, and all constructed metrics are complete.

The following is known [23] (see [9] for a shorter and more direct as well as clear proof):

Proposition 2 Each 3-dimensional Riemannian manifold (M, g) satisfying both the conditions
P (0) and P (1) is locally homogeneous.

Recall that an analogous result was found even in dimension four (see [127], [128] from [3]):

Proposition 3 Each 4-dimensional Riemannian manifold (M, g) which is curvature homogeneous
up to order one is locally homogeneous.

A Riemannian manifold satisfying the conditions P (0), P (1) and not locally homogeneous is
not known yet. Notice that in the pseudo-Riemannian case, the situation is quite different [5].

3 HOMOTHETY CURVATURE HOMOGENEITY

Here we work in arbitrary dimension again. We say that a Riemannian manifold (M, g) is homo-
thety curvature homogeneous if for any pair of points p, q there is a curvature-preserving linear
homothety f : TpM → TqM , i.e. such that f ∗(Rq) = Rp where Rp and Rq denote the (1,3)-
curvature tensors in p and q, respectively, [15], [16], [29].

Recall that under a linear homothety f : V → W of vector spaces with coefficient λ > 0 we
mean a composition of linear isometry F : V → W and a homothety H : W → W with the coef-
ficient λ. Note that (f ∗(Rq))(X, Y, Z) = f−1(Rq(fX, fY, fZ)), and f ∗(Rq) = Rp is equivalent
with f(Rp(X, Y )Z) = Rq(fX, fY )fZ for all X, Y, Z ∈ Tp(M). The following implication can
be proved [15]:
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Proposition 4 If (M, g) is curvature homogeneous then it is also homothety curvature homoge-
neous.

Let us sketch the proof in components. Let (M, g) be curvature homogeneous. Let p, q ∈ M be
a pair of points, and let F : TpM → TqM be a (0, 4)-curvature preserving linear isometry of tan-
gent spaces, that is, F ∗(gq) = gp and F ∗(Rq) = Rp hold. Now take a fixed orthonormal basis
〈e1, . . . , en〉 in TpM and choose in TqM the corresponding orthonormal frame 〈Fe1, . . . , Fen〉. In-
troduce the components of metric and curvature in p by gp(ei, ej) = gij = δji , and curvature compo-
nents in p, q by Rp(ek, e`)ej =

∑
mR

m
jk`(p)em, Rijk`(p) = Rp(ei, ej, ek, e`) = gp(Rp(ek, e`)ej, ei),

Rq(Fek, Fe`)Fej =
∑

mR
m
jk`(q)Fem, and similarly for Rijk`(q).

We get

Ri
jk`(p) = δimR

m
jk`(p) =

∑
m gimR

m
jk`(p) = gp(R

m
jk`(p)em, ei) = gp(Rp(ek, e`)ej, ei) = Rijk`(p)

= Rp(ei, ej, ek, e`) = Rq(Fei, Fej, Fek, Fe`) = Rijk`(q) = gq(Rq(Fek, Fe`)Fej, Fei)

= gq(R
m
jk`(q)Fem, Fei) = Rm

jk`(q)gq(Fem, Fei) = Rm
jk`(q)gp(em, ei) = Rm

jk`(q)δ
i
m = Ri

jk`(q).

Therefore the curvature tensor of type (1, 3) is preserved under F . Hence (M, g) is homothety
curvature homogeneous.

Let us call “generic” those Riemannian manifolds for which the Ricci eigenvalues are distinct
at all points. The following was proved [29], [15]:

Theorem 3 In dimension 3, all generic real analytic homothety curvature homogeneous manifolds
depend, up to a local isometry, by 1 arbitrary real analytic function of 3 variables and 3 arbitrary
real analytic functions of 2 variables.

Proposition 5 The converse of Proposition 4 does not hold.

Indeed, the concept of homothety curvature homogeneity is more general, which can be seen
”theoretically” already in dimension three if we compare Theorem 3 with Theorem 1 and Theorem
2. Moreover, the class of spaces of Sekigawa type described in the next section gives counterexam-
ples in any dimension.

For practical purposes, homothety curvature homogeneity can be equivalently characterized as
follows, [15]:

Proposition 6 Let (M, g) be a smooth Riemannian manifold and let R or R denote its curvature
tensor field of type (0,4), or of type (1,3), respectively. Then the following two conditions are
equivalent:

(a) For each q ∈ M , there is a linear homothety fq : TpM → TqM (p ∈ M ) such that Rp =
f ∗q (Rq), that is, (M, g) is homothety curvature homogeneous.

(b) There is a smooth function ϕ on M such that ϕ(p) = 0 and for each q ∈ M , Rp =
e2ϕ(q)F ∗q (Rq) where Fq : TpM → TqM is a linear isometry.
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We can extend the definition to higher order. For each integer k ≥ 0 (separately), let us intro-
duce the following condition:

Q(r) : For every p, q ∈ (M, g) there exists a linear homothety h : TpM → TqM
such that h∗((∇kR)q) = (∇kR)p.

A space (M, g) with the property that all the conditions Q(0), . . . , Q(r) are satisfied will be called
homothety curvature homogeneous up to order r.

Note that the linear homotheties above might be completely independent for different k.
The condition Q(r) can be characterized in the following useful equivalent way (it is a gener-

alization of Proposition 6 to higher orders; for the proof, see [15]):

Proposition 7 The following conditions are equivalent for a smooth Riemannian manifold (M, g):

(a) (M, g) satisfies the conditionQ(k), i.e., for every p, q ∈ (M, g) there exists a linear homothety
h : TpM → TqM such that h∗((∇kR)q) = (∇kR)p.

(b) There is a smooth function ϕ on M such that ϕ(p) = 0 for a fixed p ∈ M and (∇kR)p =
e(k+2)ϕ(q)F ∗((∇kR)q) for each q ∈M , where F : TpM → TqM is a linear isometry.

Our aim is to compare the classical curvature homogeneity and the new concept of homothety
curvature homogeneity. We verify by means of examples that the class of homothety curvature
homogeneous (of order r) spaces is much wider than the class of curvature homogeneous (of order
r) spaces. It is quite natural to start our exposition with the dimension n = 3.

4 METRICS WHICH ARE NOT LOCALLY HOMOGENEOUS

As a contrast to the above results concerning the conditions P (0) and P (1), Proposition 2, Propo-
sition 3, we shall show that a 3-dimensional Riemannian manifold (R3, ĝ) of Sekigawa type given
below, [21], [22], satisfies the conditions Q(0) and Q(1), therefore it is homothety curvature ho-
mogeneous up to order 1, but, yet, (R3, ĝ) is not locally homogeneous.

4.1 Original version of the example of K. Sekigawa.

In 1975, K. Sekigawa introduced [22], [21] Riemannian metrics (depending on two real parameters
c1, c2 and a prescribed curvature S < 0) on R3[u, u, w]. His motivation was to find spaces that are
not locally homogeneous. He used the idea of Bishop and O’Neil who constructed a wide class
of Riemannian manifolds of negative curvature by warped product B×fF using C∞-function f

on B, [1]. Namely, Sekigawa considered R2×fR1 where f = c1e
t
√
−S/2 + c2e

−t
√
−S/2, c1, c2,

S are certain real numbers, c1, c2 are positive, S < 0, and t = u cosw − v sinw where v, w are
coordinates on R2. The Riemannian manifold is complete, irreducible, with the prescribed negative
constant scalar curvature S. It was checked later that the constant principal Ricci eigenvalues of
the metric are %1 = %2 = −1, %3 = 0, and the corresponding model space is H2(−1)× R, [11].
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4.2 Properties of 3-dimensional Sekigawa-like metrics.

Let us show how the original construction was modified and extended step by step, and finally used
for other purposes.

First let us describe here a version of Sekigawa’s construction in a new notation, more suitable
for further generalization. Let f(x) = aex + be−x be a function of one variable where a, b are
positive constants. If we consider a metric ĝ on R3[w, x, y] given by the formula ĝ = ĝ(a, b) =∑2

i=0(ω
i)2 with respect to the orthonormal coframe consisting of one-forms ω0 = f(x)dw, ω1 =

dx−ydw, ω2 = dy+xdw then it can be checked that the 3-dimensional space (R3, ĝ) is irreducible,
simply connected, complete, semi-symmetric, that is, it satisfies the algebraic identity R(X, Y ) ·
R = 0. It also satisfies the condition P (0). Yet, it is not locally homogeneous, therefore it cannot
satisfy P (1).

To examine further properties of such metrics let us examine covariant derivatives of the cur-
vature tensor with respect to the orthonormal moving frame 〈E0, E1, E2〉 dual to the co-frame
〈ω0, ω1, ω2〉 introduced above. We have

E0 = f−1
(
∂

∂w
+ y

∂

∂x
− x ∂

∂y

)
.

A standard evaluation shows that the Riemannian (0,4)-curvature tensor is given by the formula

R = 4f−1f ′′ ω0 ∧ ω1 ⊗ ω0 ∧ ω1,

and the second order differential equation

f−1f ′′ = 1 (3)

is satisfied. Hence the only nonvanishing components of the curvature tensor are

R(E0, E1)E1 = −E0, R(E0, E1)E0 = E1

and those enforced by the skew-symmetry of the curvature tensor.
As far as the sign convention is concerned, we follow the traditional convention as in [8] or [6]

(the signs in some formulas in [11] are opposite to ours). It can be checked that

(∇E0R)(E0, E1, E2, E0) = −f−1

and all other components of the first covariant derivative ∇R, up to natural permutations of the
four inner arguments, vanish. Let us make a choice a+ b = 1, and define a function ϕ(q) on R3 by
e3ϕ(q) = f(x) = aex + be−x where x = x(q). Then the condition (b) of Proposition 7 for the origin
p = [0, 0, 0] is satisfied in the case k = 1. Therefore the condition Q(1) is satisfied, as well as
P (0), and hence Q(0) holds. Let us also examine the condition Q(2). We calculate the following
components of the second covariant derivative:

(∇2
E0E0
R)(E0, E1, E1, E0) = 2f−2

and
(∇2

E0E0
R)(E0, E1, E2, E0) = yf−3f ′.
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Since the last two components are never equal, there does not exist a function ϕ(q) satisfying the
condition (b) of Proposition 7 for k = 2. As a conclusion we get that the condition Q(2) is not
fulfilled.

So as a contrast to the above results on curvature homogeneity, we proved that there exists a
3-dimensional Riemannian manifold (M, ĝ) of Sekigawa type satisfying the conditions Q(0), Q(1)
but not Q(2). Another speaking, it means that (M, ĝ) is homothety curvature homogeneous up to
order 1, although it is not curvature homogeneous up to order one, but (M, ĝ) is not homothety
curvature homogeneous up to order 2.

4.3 Further generalization in dim 3.

The above three-dimensional example by Sekigawa was extended by F. Tricerri, L. Vanhecke and
O. Kowalski in [10] in dimension 3 for more general functions f , and further generalization to
higher (arbitrary) dimension is also possible as we show below. Our main aim is to examine the
arising new class of examples from the view-point of homothety curvature homogeneity.

Consider the real 3-dimensional space R3[w, x, y] with coordinates denoted by w, x, y and
let f(w, x) be a smooth function of two variables. In a domain U ⊂ R3[w, x, y] introduce the
Sekigawa-type Riemannian metric gf =

∑2
i=0(ω

i)2 by means of exterior differential forms

ω0 = f(w, x)dw, ω1 = dx− ydw, ω2 = dy + xdw

which constitue an orthonormal coframe as it can be checked. If a(w), b(w) are arbitrary functions
of one variable and k is a real constant then the following can be verified:

(a) If f(w, x) = a(w)ekx + b(w)e−kx, then the corresponding principal Ricci curvatures are
%1 = %2 = −k2, %3 = 0.

(b) If f(w, x) = a(w) cos kx + b(w) sin kx, then the corresponding principal Ricci curvatures
are %1 = %2 = k2, %3 = 0.

Such metrics are always locally irreducible and are not locally homogeneous. We bring here
the following generalization.

4.4 Extended class of Sekigawa type examples in any dimension.

In arbitrary dimension m = n+ 1, we are able to present examples that we call here ”examples of
Sekigawa type”, distinguish a subclass of curvature homogeneous spaces, and construct homothety
curvature homogeneous spaces of Sekigawa type which are not curvature homogeneous.

Consider Rn+1 with standard coordinates (w, x1, . . . , xn). Take an open subset U of R2[w, x1],
a non-vanishing smooth function f : U → R on U , and a skew-symmetric smooth (n × n)-matrix
function A(w) = (Ai

j(w)) in one variable. On U introduce the metric gf,A(w) =
∑n+1

j=0 ω
j ⊗ ωj by

an orthogonal coframe

ω0 = f(w, x1)dw, ωi = dxi +
n∑

j=1

Ai
j(w)xjdw, i = 1, . . . , n;

denote by 〈E0, E1, . . . , En〉 be the corresponding orthonormal basis of vector fields.
An evaluation shows that the Riemannian (0,4)-curvature tensor is given by the formula ([3])

R = 4f−1f ′′x1x1 ω0 ∧ ω1 ⊗ ω0 ∧ ω1. (4)
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We obtain that the non-zero components are justR0101 = R1010 = −R1001 = −R0110 = −f−1f ′′x1x1 ,
and all other components Rijkl vanish.

Now, the metric gf,A(w) introduced above is curvature homogeneous if and only if there exists a
constant k such that f−1f ′′x1x1 = k which can be written equivalently as the second order differential
equation

f ′′x1x1 = kf. (5)

Any solution f of (5) takes one of the following forms:

f(w, x1) = a(w) exp(
√
kx1) + b(w) exp(−

√
kx1) if k > 0,

f(w, x1) = a(w) cos(
√
−kx1) + b(w) sin(

√
−kx1) if k < 0,

f(w, x1) = a(w)x1 + b(w) if k = 0

(6)

where a(w) and b(w) are differentiable functions such that f(w, x1) > 0 in U . Moreover, gf,A(w) is
non-flat if and only if k 6= 0, so that the last case can be omitted in what follows. Remark that U can
be the whole plane in the case k > 0 and an open strip in the plane for k < 0. Recall that this class
of spaces is remarkable because it includes all irreducible curvature homogeneous spaces which
are not locally homogeneous and whose curvature tensor R “is the same” as that of a Riemannian
symmetric space (so-called “non-homogeneous relatives of symmetric spaces”, see [2]).

We shall need the following (see [29] for the proof)

Proposition 8 Let (M, g) be a Riemannian manifold and let 〈E1, . . . , En〉 be an orthonormal mov-
ing frame on a domain U ⊂M . Fix a point p ∈ U . Suppose that, with respect to this moving frame,
Rijk`(q) = φ(q)Rijk`(p) for each point q ∈ U and for all choices of indices, where φ(q) is a smooth
and positive function on U . Then there is a smooth function ϕ(q) such that ϕ(p) = 0 and, for each
point q,Rp = e2ϕ(q)F ∗q (Rq) where Fq : TpM → TqM is a linear isometry.

Proposition 9 There exist Sekigawa type homothety curvature homogeneous spaces which are not
curvature homogeneous.

To give the proof, we wish to construct ”proper” homothety curvature homogeneous spaces. So
let f be now an arbitrary smooth function on R2 such that f and f−1f ′′x1x1 are nonzero at all points
and such that f ′′x1x1/f is never a constant in an open domain of R2. Then the corresponding metric
g = gf,A(w) defined in (a neighborhood of) Rn+1 has the curvature components as in the formula
(4). As we can see these curvature components Rijk` satisfy

Rijk`(q) = (f−1(q)f ′′x1x1(q))/(f−1(p)f ′′x1x1(p))Rijk`(p)

for any pair of points p, q ∈ Rn+1 and all indices i, j, k, `. Fix a point p. Then the assumptions of
the Proposition 8 are satisfied with the (positive) function φ(q) defined by

φ(q) = f−1(q)f ′′x1x1(q)/(f−1(p)f ′′x1x1(p)).

By Propositions 8, 6 and our special additional assumptions on f we get: (Rn+1, g) is a homothety
curvature homogeneous space, but it is not curvature homogeneous (due to the above assumptions
on f ).

Remark 1 Particularly if we take n = 2, A = (aij) with a11 = a22 = 0, a12 = −a21 = −1,
f(w, x1) = a exp(λx1) + b exp(−λx1), where a, b are non-negative integers, we can see that the
above metric is in fact a generalization of Sekigawa type example from 4.2.
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CONCLUSION

First we distinguish between curvature homogeneity and homothety curvature homogeneity, give
a coordinate proof of Proposition 4, show why the converse does not hold, and notice that in
low dimensions 3 and 4, curvature homogeneous spaces up to order one are locally homogeneous
(Propositions 2, 3). Although some of the results were announced already in [29] we bring new facts
here. In part 4 we start with one example of K. Sekigawa from 1975, of a Riemannian manifold
given as a warped product R2×fR1 described in 4.1., which served originally a counterexample
to local homogeneity but was an inspiration for further investigations. We give here evaluations
concerning Example 1 from [29]. We calculate covariant derivatives of the curvature tensor up
to order two in this 3-dimensional case and conclude: there exists a 3-dimensional Riemannian
manifold which is homothety curvature homogeneous up to order 1 (although it is not curvature
homogeneous up to order one), but it is not homothety curvature homogeneous up to order 2, and
is not locally homogeneous.

We show how the original construction can be modified and extended step by step. Finally
we use it for other purposes. We generalize this 3-dimensional example to a huge class of spaces
that we can construct in arbitrary dimension. Riemannian metrics of our examples, given in the
space Rn+1 with standard coordinates (w, x1, . . . , xn), are of the form gf,A(w) from 4.3, depend
on one smooth (”generating”) function f of two variables and a finite number of functions of
one variable (components of the functional matrix A(w)). We show that the original example of
Sekigawa is a particular case of the more general construction (cf. Remark), endeed. Our main
aim is to examine the arising class of examples (which was already mentioned in [29]) from the
new view-point, namely under which conditions they are curvature homogeneous, or when they are
”proper” homothety curvature homogeneous spaces. First we distinguish the subclass of curvature
homogeneous spaces: this geometric property is formulated as a second order differential equation
(5) for the generating function f , and all possible solutions of the equation are listed in (6).

Now if we take a non-vanishing function f for which the crutial differential equation (5) fails
we are sure that the corresponding space is not curvature homogeneous. Due to calculations of the
curvature we can see that the assumptions of Proposition 8 are satisfied, and due to Proposition 6
we are able to confirm that the space is homothety curvature homogeneous, Proposition 9 holds.
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