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ON THE REGULAR MATRIX METHOD OF SUMMABILITY
AND Ig

c -CONVERGENCE

Vladimı́r Baláž, Alexander Maťašovský and Tomáš Visnyai
Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava

Radlinského 9, 812 37 Bratislava, Slovakia, vladimir.balaz@stuba.sk, 0000-0003-0574-1708,
alexander.matasovsky@stuba.sk, 0000-0003-1008-1118, tomas.visnyai@stuba.sk,

0000-0001-7076-3271

Abstract: Recently we introduced Ig
c ideals generated by a special real function g : R+ → R+.

We investigated Ig
c convergence and Mp,g-summable method and studied their properties. In

this paper we will study further properties of Ig
c -convergence, Mp,g-summability and Riesz ma-

trix summable method. For bounded sequences we show a connection between Ig
c -convergence

and regular matrix method of summability.

Keywords: sequences of real numbers, convergence, ideal, summability.

INTRODUCTION

We recall the basic definitions and notations that will be used throughout the paper. Let N be
the set of all positive integers, N0 = N ∪ {0}, and R+ be the set of all positive real numbers.
A system I, ∅ ̸= I ⊆ 2N is called an ideal, provided that I is additive (A,B ∈ I implies
A ∪ B ∈ I) and hereditary (A ∈ I, B ⊂ A implies B ∈ I). The ideal is called nontrivial
if I ̸= 2N. If I is a nontrivial ideal, then I is called admissible if it contains the singletons
({n} ∈ I for every n ∈ N). The fundamental notation which we shall use is I-convergence
introduced in the paper [11] (see also [5] where I-convergence is defined by means of the
dual notion of an ideal so-called filter). The notion I-convergence corresponds to the natural
generalization of the notion of statistical convergence (see [2], [4], [7], [8] and [13]).

Definition 1. Let x = (xn) be a sequence of real (complex) numbers. We say that the se-
quence I-converges to a number L, and write I − limxn = L, if for each ε > 0 the set
Aε = {n : |xn − L| ≥ ε} belongs to the ideal I.

In the following, we suppose that I is an admissible ideal. Then for every sequence (xn) we
immediately have that limn→∞ xn = L (classic limit) implies that (xn) also I-converges to the
same number L but the opposite is not true. In other words, for an admissible ideal I we have
Ifin ⊆ I, where Ifin is the ideal of all finite subsets of N and Ifin convergence coincides with
the usual convergence. If I1 ⊆ I2 then the statement I1 − limxn = L implies I2 − limxn = L
(see [11]).

Let Id = {A ⊆ N : d(A) = 0}, where d(A) is the asymptotic density of A ⊆ N. The num-
bers d(A) = lim infn→∞

#{a≤n : a∈A}
n

and d(A) = lim supn→∞
#{a≤n : a∈A}

n
are called the

lower and upper asymptotic density of the set A, respectively (#M denotes the cardinality
of the set M ). If d(A) = d(A) = d(A) then d(A) is said to be the asymptotic density of
A. The usual Id-convergence is called statistical convergence (see [3], [4], [7] and [13]). For
0 < q ≤ 1 the ideal I(q)

c =
{
A ⊂ N :

∑
a∈A a−q < ∞

}
is an admissible ideal. The ideal

I(1)
c =

{
A ⊂ N :

∑
a∈A

1
a
< ∞

}
is usually denote by Ic (see [4] and [10]). The class of all

I-convergent sequences is a linear space (see [11]).

1
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1 DEFINITIONS AND NOTIONS

Definition 2. Let g : R+ → R+ be a real function such that
∑∞

n=1
1

g(n)
= +∞. Then we can

define an ideal Ig
c =

{
A ⊂ N :

∑
n∈A

1
g(n)

< +∞
}

. The ideal Ig
c is an admissible ideal.

The notion Ig
c is an union view for many famous ideals.

If g(x) = k, where k ∈ R then the ideal Ig
c contains only finite sets, hence Ig

c = Ifin. Next if
g(x) = x, then Ig

c = Ic and finally if we take g(x) = xq, q ∈ (0, 1⟩ then the ideal Ig
c = I(q)

c .

In [3] we introduced a certain summable method so-called Mp,g which can be defined as follows.

Definition 3. Let p > 0 and g : R+ → R+. We say that the bounded sequence x = (xk) is
Mp,g-summable to the real number L (and write Mp,g − limxk = L) if

K =
∞∑
k=1

|xk − L|p

g(k)
< +∞.

It is easy to show that the summable method Mp,g for p > 0 and a real function g : R+ → R+

such that
∑

n∈N
1

g(n)
= +∞ implies Ig

c -convergence to the same real number and the opposite
is not true (see [3]).

Theorem 4 (Theorem 5 in [3]). Let p > 0 and g : R+ → R+ such that
∑∞

n=1
1

g(n)
= +∞. If

the sequence x = (xk) is Mp,g-summable to L ∈ R, then Ig
c − limxk = L.

The Ig
c -convergence is an example of a linear functional defined on a subspace of the space of

all bounded sequences of real numbers. Another important family of such functionals are so
called matrix summability methods inspired by [9].

We will study connections between Ig
c -convergence and one class of matrix summability meth-

ods. Let us start by introducing a notion of regular matrix transformation (see. [6])

Let A = (ank) (n, k ∈ N) be an infinite matrix of real numbers. The sequence t = (tn) of real
numbers is said to be A-limitable to the number s if limn→∞ sn = s, where

sn =
∞∑
k=1

anktk (n = 1, 2, . . . ).

If t = (tn) is A-limitable to the number s, we write A− limn→∞ tn = s.

We denote by F(A) the set of all A-limitable sequences. The set F(A) is called the convergence
field. The method defined by the matrix A is said to be regular provided that F(A) contains
all convergent sequences t = (tn) and limn→∞ tn = s implies A − limn→∞ tn = s. Then A is
called a regular matrix.

It is well-known that the matrix A is regular if and only if it satisfies the following three condi-
tions (see [6] and [12]):

(i) there exists K > 0 such that for every n ∈ N,
∑∞

k=1 |ank| ≤ K,

2
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(ii) for every k ∈ N, limn→∞ ank = 0,

(iii) limn→∞
∑∞

k=1 ank = 1.

It is well known that a bounded sequence x = (xn) of real numbers Id-converges to real number
L if and only if the sequence is strongly summable to L in Cesàro sense. The complete charac-
terization of statistical convergence (Id-convergence) is described by J. A. Fridy and H. I. Miller
in the paper [9]. They defined a class T of lower triangular matrices A with properties:

(1) for every n ∈ N,
∑∞

k=1 ank = 1,

(2) if C ⊆ N such that d(C) = 0, then limn→∞
∑

k∈C ank = 0.

They proved the following assertion:

Theorem 5 (Theorem 1 in [9]). The bounded sequence x = (xn) is statistically convergent to
L if and only if x = (xn) is A-summable to L for every A ∈ T .

In the paper [10] is proved analogous result for I(q)
c -convergence, which is a special type of

Ig
c -convergence.

2 MAIN RESULTS

Here we prove analogous result to the theorem above for Ig
c -convergence. First we define the

class Tg lower triangular nonnegative matrices as follows:

Definition 6. Matrix A = (ank) belongs to the class Tg for a positive real function g : R+ → R+

such that
∑

k∈N
1

g(k)
= +∞ if and only if it satisfy the following conditions:

(1’) limn→∞
∑∞

k=1 ank = 1,

(2’) if C ⊆ N and C ∈ Ig
c then limn→∞

∑
k∈C ank = 0.

It is easy to see that every matrix of class Tg is regular. Example 4.2. in [10] shows that the
converse does not hold.

Further we need the next lemma.

Lemma 7 (Lemma 4.3. in [10]). If the bounded sequence x = (xn) is not I-convergent then
there exist numbers λ < µ such that neither the set {n ∈ N : xn < λ} nor the set {n ∈ N :
xn > µ} belongs to the ideal I.

As the proof is the same as the proof of Lemma in [9] we will omit it.

Next theorem shows connection between Ig
c -convergence of bounded sequence of real numbers

and A-summability of this sequence for matrices A from the class Tg. It is a slightly general-
ization of results Theorem 1 in [9] and Theorem 4.4 in [10].

Theorem 8. A bounded sequence x = (xn) of real numbers Ig
c -converges to L ∈ R for a

positive real function g : R+ → R+ such that
∑

k∈N
1

g(k)
= +∞ if and only if it is A-summable

to L for every matrix A ∈ Tg.

3
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Proof. Let x = (xn) be bounded sequence of real numbers such that Ig
c − limxn = L and

A ∈ Tg. As A is regular there exists a K ∈ R such that for each n = 1, 2, . . . we have∑∞
k=1 |ank| ≤ K.

It is sufficient to show that limn→∞ bn = 0, where bn =
∑∞

k=1 ank(xk − L). For ε > 0 put
Bε = {k ∈ N : |xk − L| ≥ ε}. By assumption we have Bε ∈ Ig

c . By the condition (2’) from
Definition 6 we have

lim
n→∞

∑
k∈Bε

|ank| = 0. (1)

As the sequence x = (xn) is bounded, there exists M > 0 such that for every k ∈ N

|xk − L| ≤ M. (2)

Let ε > 0. Then

|bn| ≤
∑

k∈B ε
2K

|ank| |xk − L|+
∑

k/∈B ε
2K

|ank| |xk − L|

≤ M
∑

k∈B ε
2K

|ank|+
ε

2K

∑
k/∈B ε

2K

|ank|

≤ M
∑

k∈B ε
2K

|ank|+
ε

2
.

(3)

By part (2’) of Definition 6 there exists an n0 such that for all n > n0∑
k∈B ε

2K

|ank| <
ε

2M
.

Together by (3) we obtain limn→∞ bn = 0.

Conversely, suppose that Ig
c −limn→∞ xn = L does not hold. We show that there exists a matrix

A ∈ Tg such that A− limn→∞ xn = L does not hold, too.

Without lost of generality we may assume that x = (xn) is not Ig
c -convergent. In the oppo-

site case Ig
c − limn→∞ xn = T and T ̸= L. From the first part of this proof we have that

A− limn→∞ xn = T for any A ∈ Tg.

By the Lemma 7 there exist λ and µ (λ < µ), such that neither the set

U = {k ∈ N : xk < λ}

nor the set
V = {k ∈ N : xk > µ}

belongs to the ideal Ig
c . It is clear that U ∩V = ∅. If U /∈ Ig

c and V /∈ Ig
c then

∑
i∈U

1
g(i)

= +∞
and

∑
i∈V

1
g(i)

= +∞ respectively. Denote by Mn = M ∩ {1, 2, . . . , n} for a set M ⊆ N. As

4
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U, V /∈ Ig
c we have limn→∞

∑
i∈Un

1
g(i)

= +∞ and limn→∞
∑

i∈Vn

1
g(i)

= +∞. Define

ank =



1
g(k)∑

i∈Un

1
g(i)

if n ∈ U and k ∈ Un,

1
g(k)∑

i∈Vn

1
g(i)

if n ∈ V and k ∈ Vn,

1
g(k)∑n
i=1

1
g(i)

if n /∈ U ∪ V and k ≤ n,

0 otherwise.

Let us check that A ∈ Tg. Obviously A is a lower triangular nonnegative matrix. Condition (1’)
is clear from the definition of matrix A. Condition (2’): Let B ∈ Ig

c and b =
∑

k∈B
1

g(k)
< +∞.

Then ∑
k∈B

ank ≤
1∑n

i=1
1

g(i)

∑
k∈Bn

1

g(k)
χB(k) ≤

b∑n
i=1

1
g(i)

→ 0

for n → ∞. Thus A ∈ Tg. For n ∈ U

∞∑
k=1

ankxk =
1∑

i∈Un

1
g(i)

n∑
k=1

1

g(k)
χU(k)xk <

λ∑
i∈Un

1
g(i)

n∑
k=1

1

g(k)
χU(k) = λ,

on other hand for n ∈ V

∞∑
k=1

ankxk =
1∑

i∈Vn

1
g(i)

n∑
k=1

1

g(k)
χV (k)xk >

µ∑
i∈Vn

1
g(i)

n∑
k=1

1

g(k)
χV (k) = µ.

Therefore A− limn→∞ xn does not exist.

Let us consider which matrices are members of Tg. Most classical summability matrices are
nonnegative and satisfy the property (1’), so we focus our attention on the property (2’). In [1]
R. P. Agnew showed that

lim
n→∞

(
max
k∈N

|ank|
)

= 0 (4)

implies that a regular matrix A is stronger than ordinary convergence. We show that the property
(4) is implied by the property (2’) and so (4) is necessary for matrix Tg.

Theorem 9. Let A be a nonnegative matrix having the property (2’) then A has also the property
(4) ergo limn→∞ (maxk∈N |ank|) = 0.

Proof. Suppose that limn→∞ (maxk∈N |ank|) ̸= 0 and choose a subsequence of rows (nm) and
columns (km) such that K = {km : m ∈ N} belongs to the ideal Ig and anmkm ≥ ε > 0 for
each m ∈ N. Then ∑

k∈K

|anmk| ≥ |anmk| ≥ ε for each m ∈ N.

Hence A do not satisfy the property (2’).

5
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Further we show some type well known matrix so called Riesz matrix (see [12]) which fulfills
condition (1’). Let p = (pj) be the sequence of positive real numbers. Put Pn = p1+ p2+ · · ·+
pn. Now we define Riesz matrix A = (ank) as follows:

ank =


pk
Pn

k ≤ n,

0 k > n.

Especially we put pn = 1
g(n)

for a positive real function g : R+ → R+. This special class of
matrix we denote (R, g).

It is clear that this matrix fulfills conditions (1’) and (2’). Moreover (R, g) matrix is regular if
and only if limn→∞

∑n
k=1

1
g(k)

= +∞ (see [12]). For this class of matrix is true the following
assertion.

Theorem 10. Let x = (xn) be a bounded sequence of real numbers. For a positive real function
g : R+ → R+ such that

∑
k∈N

1
g(k)

= +∞, Ig
c -convergence implies (R, g) summability of

x = (xn).

Proof. See the first part of the proof of Theorem 8.

Converse does not hold. For this is sufficient to find a bounded sequence x = (xk) such that
(R, g) − limk→∞ xk exists, but the sequence x = (xk) is not Ig

c -convergent. For a function
g(x) = xα for any α ∈ (0, 1) can be find such example in [10].

Corollary 11. Let p > 0. For a function g : R+ → R+ such that
∑

n∈N
1

g(n)
= +∞ we have

that Mp,g-summability implies (R, g)-summability for bounded sequences.

Proof. The proof immediately immplies from Theorem 5 in [3] and the proof of the sufficient
condition of Theorem 8.

Problem 12. If we take an admissible ideal I and define the class TI of matrices by replacing
the condition (2’) in Definition 6 by the following condition (2”):

(2”) If C ⊆ N and C ∈ I (an admissible ideal on N) then limn→∞
∑

k∈C |ank| = 0.

Then it is easy to see that the sufficient condition of Theorem 8 holds for I too. The question is
what about the necessary condition.

CONCLUSION

It turns out that the study of I-convergence of sequences (namely sequences related to arithmeti-
cal functions) for different kinds of ideals I (see [4]) gives a deeper insight into the behaviour
and properties of these arithmetical functions. Algebraic Number Theory (ANT) has many deep
applications in cryptology. Many basic algorithms, which are widely used, have their security
due to ANT.
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Abstract: The article offers ideas for problem teaching in mathematics at secondary schools 

and universities. There is solved a problem how to calculate the dimensions of a triangle and a 

cuboid from the given general parameters (e.g. for a triangle its circumference and area are 

given). While solving there are used symmetric polynomials and the relations between roots 

and coefficients of an algebraic equation, but also the knowledge of the behaviour of a cubic 

function. 

 

 
Keywords: Algebraic equation, cubic function, symmetric polynomial, triangle, cuboid. 

 
 

INTRODUCTION 
 
       Cultivating students creative mathematical thinking and their interest in mathematics is the 

substantial part of teaching mathematics at any type or grade of school. While engaging 

students, any example of possible utilisation of mathematics theories are of great importance. 

This article focuses on the use of elementary symmetric polynomials in geometric calculations.  

       The statement that every symmetric polynomial can be represented uniquely with the help 

of elementary symmetric polynomials is commonly presented and proved, and the practical 

transformations are practised. However, only rarely can students see the use of this topic at 

secondary school mathematics (tasks like: Finding the sum of third powers of the cubic function 

roots without solving it; or solving systems of equations of higher orders).  

       In this article we will show how it is possible to use elementary polynomials while solving 

practical exercises from elementary geometry. It is interesting that even though the assignment 

suggests that these are tasks for a basic school pupil, while solving it we need the knowledge 

of at least a secondary school pupil. 

     To conclude this part, let us remind the necessary theoretical information (See e.g. [1], [4], 

[5], [6], [8], [9]). The symmetric polynomial of n variables is such polynomial which does not 

change at any permutation of its variables. There applies generally that every symmetric 

polynomial of n variables can be formulated uniquely with the help of elementary symmetric 

polynomials 1, …, n. For n = 2 there holds  1 = x + y, 2 = xy, for n = 3 there applies  1 = 

x + y + z,2 = xy + xz + yz, 3 = xyz. When we want to represent the symmetric polynomial, 

for n = 2 there holds x2 + y2 =1
2 − 22, x

3+ y3 = 1
3 − 312, for n = 3 we get x2+ y2 + z2= 1

2 

− 22, x
3+ y3 + z3= 1

3 − 312 + 33. 
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1 THE RECTANGULAR CUBOID PROBLEM 
 

Problem 1 (See [10]): Let m   n   p be the lengths of face diagonals of a cuboid. Calculate 

the lengths of cuboid´s edges a, b, c. 

Solution: This problem is quite easy, and it can be solved using formulas from elementary 

geometry. With the “usual” notation of cuboid´s vertices ABCDA`B`C`D`, let us denote a = 

AB, b = AD, c = AA`, m = AD`, n = AB`, p = AC. Then our task is to calculate the cuboid´s 

dimensions a, b, c.  

From right-angled triangles ADD`, ABB`, ABC which lie in cuboid´s faces there holds 

according to Pythagoras´ theorem 

                                                          m2 = b2 + c2,          (i) 

                                                           n2 = a2 + c2,         (ii) 

 p2 = a2 + b2.         (iii) 

Without detriment to generality, let us suppose according to the assignment m   n   p. We 

will sum the equation (ii) and (iii), and from the sum we will distract the equation (i). We will 

get − m2 + n2 + p2 = 2 a2 and from that after modification 

a2 = 
1

2
 (− m2 + n2 + p2). 

Provided that − m2 + n2 + p2  0, after simplification we will get the formula for the 

calculation of the length of the edge a: 

a = √
1

2
(𝑛2 + 𝑝2 −𝑚2). 

Similarly, we can find the two remaining cuboid´s edges: 

b = √
1

2
(𝑚2 + 𝑝2 − 𝑛2), 

c = √
1

2
(𝑚2 + 𝑛2 − 𝑝2). 

For the problem to have solutions, the numbers under the root in all three formulas have to be 

positive numbers. Therefore numbers m2, n2, p2 have to satisfy the triangle inequality. Under 

such condition, problem 1 has a solution and the lengths of edges a, b, c are given by the 

above-mentioned formulas. 

Exercise: Let p = 4, n = 5, m = 6. The powers of these numbers 16, 25, 36 satisfy triangle 

inequality. Therefore from the above-mentioned formulas a =√
5

2
 , b =√

27

2
, c =√

45

2
, after 

calculation the approximate values are a = 1,58, b = 3,67, c = 4,74. 

Problem 2: This problem is slightly complicated. Let us denote o as the sum of lengths of all 

cuboid´s edges, S as its surface. Prove that there exists a rectangular cuboid for which there 

applies o = 24, S = 18. Calculate the volume of a cube with the same length of a solid 

diagonal as of this cuboid. 

Solution: We will solve the first part of the task without the theory of symmetric polynomials 

using the knowledge of a secondary school pupil. The symmetric polynomials will be used in 

the second part. 
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      We will denote the lengths of the cuboid´s edges as a, b, c. According to the assignment 

there holds 4a+4b+4c=24, therefore a+b+c= 6. Then from the assignment 2ab + 2ac + 2bc 

= 18 and then ab + ac + bc = 9. The task of the first part is to prove that there exist three 

positive real numbers a, b, c with properties: 

  a + b + c= 6 

                                                         ab + ac + bc = 9.                                                        (1) 

Let us proceed from the equation a+ b+ c= 6, and let us substitute a + b= 6− c to the 

equation ab + ac + bc = 9. After modification we will get 

c2 − 6c − ab + 9 = 0. 

Let us substitute b = 6 − c − a (*) and after a simple modification we will get a quadratic 

equation with a parameter c: 

a2 + a (c − 6) + (c − 3)2 = 0. 

When we solve it and substitute back for a to (*), we will get formulas for a, b dependent on 

the parameter c: 

                                  
2

c3c12c6
a

2
−+−

= ,  
2

c3c12c6
b

2
−−−

=  .                            (2) 

Now we have to restrict the choice of the parameter c. From the condition 12c − 3c2   0  there 

holds 0   c  4. At the same time, both values a, b have to be positive. Evidently it is 

sufficient if we focus on the numerator from the formula for b. From the condition 

2
c3c12c6 −−−  0 we get (2c − 6)2  0, the inequality holds for all real numbers with the 

exception c = 3. The conclusion for the first part is the following: with any choice of the real 

number c from the union of intervals (0, 3)    (3, 4  and calculation of numbers a, b 

according to (2), we will get three numbers a, b, c satisfying (1); then they are the lengths of 

the cuboid with the properties required by the assignment. Now it is necessary to perform the 

verification if the above given three numbers a, b, c really satisfy the relations (1). Due to its 

extent, we will not present here (it is only modification of algebraic relations), let us only state 

that the correctness will be verified. Let us note that one possible solution (even the integer 

one) is je a = 1, b = 1, c = 4.  

     Now let us focus on the calculation of the length of the solid diagonal of the desired cube. 

This cube has the same length of a diagonal as the cuboid. We know that the length of the 

cuboid equals l =
222

cba ++ . If we use elementary symmetric polynomials (1 = a + b + 

c = 6, 2 = ab + ac + bc = 9) for expressing the formula below the root, we will get l = 

2

2

1
2 − = 23 . From here we get an interesting statement that all cuboids, whose lengths 

of edges satisfy (1), have the same lengths of their solid diagonals. The assignment of the 

second part is therefore correct, the volume of the cube will be determined unambiguously. 

If we denote the length of the cube´s edge x, the length of the solid diagonal equals 3 x. 

However, there holds 3 x = 23 , from here x = 6 . The desired volume of the cube 

equals the value 66 . Let us consider another interesting feature which is possible by using 

symmetric polynomials: While solving, we got an expression 
222

cba ++ , without 

knowing the values of a, b, c. Therefore this assignment can be used as a motivation for the 

study of symmetric polynomials. 

     Now, we will deal with the generalization of the first part of the given assignment, i.e. the 

question of the general existence of cuboids from the given parameters. Let there be two 
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arbitrary positive real numbers o, S; the assignment is to find out if there exists the cuboid 

with the lengths of edges a, b, c, for which there applies 

4a + 4b + 4c = o, 2ab + 2ac + 2bc = S. 

     For the simplification, in the part dealing with the cuboid, we will introduce the notation 

4

o
 = k, 

2

S
 = l. For didactic reasons we will not use symbols 1, 2 , even though numbers k, l  

denote elementary symmetric polynomials (there holds 1 = a + b + c = k, 2 = ab + ac + bc 

= l) . Even if the existence of the cuboid is not guaranteed for the given numbers o, S, we will 

denote m as its volume in case that it exists. Then there holds 3 = abc = m. From algebra, 

there are known relations between coefficients and the roots of the polynomial, which can be 

used for representation of the polynomial´s coefficients with the help of elementary 

symmetric polynomials of its roots (see e.g. [5], [6], [9]). From these relations now we get 

that the desired cuboid exists if and only if the algebraic equation 

                                         x3 − k x2 + l x − m = 0                                                               (3) 

has just three positive real solutions a, b, c. In the equation (3), numbers k, l are set by the 

assigned values o, S, number m is a parameter. We will denote the left side of the equation (3) 

as f(x). This function is a cubic one and its graph is a cubical parabola. It always has two local 

extremes x1 , x2 ; with respect to the leading coefficient +1 this function is increasing in the 

interval ( − , x1), decreasing in the interval (x1 , x2 ) and increasing in the interval (x2 ,  ). 

For the equation (3) to have three positive real solutions (for now let us suppose that they are 

mutually unlike), there have to apply the following conditions: x1  x2 , x1  0, x2   0, f(0)  0, 

f(x1)  0, f(x2 )  0.  

If the cuboid exists, its volume m is always a positive number. Provided that m  0 there 

always holds that f(0)  0. Let us find the coordinates of the extremes x1 , x2 : There holds f \ 

(x) = 3x2 − 2kx + l . we will find the stationary points, i.e. we will solve the quadratic equation 

3x2 − 2kx + l = 0. Its solution is as follows: 

3

l3kk
x

2

1

−−
= ,     

3

l3kk
x

2

2

−+
= .  

     Now it is necessary to ensure that both two roots of the quadratic function are real and 

positive (the inequality x1    x2 is evident). Both roots are real numbers provided that k2 − 3l   

0, which is a necessary condition for the existence of the cuboid of the given parameters 

(because 
4

o
 = k, 

2

S
 = l). Now it is sufficient if we verify the inequality x1  0. After 

substitution, we get the inequation 
3

l3kk
2
−−

   0, therefore k  l3k
2
− . Provided that k2 

− 3l   0,  we can raise this inequation to a power (both sides are nonnegative numbers). After 

this step and simplification, we will get the inequation 0  − 3l, which applies for any value of 

the variable l (according to the assignment is always positive). Provided that k2 − 3l   0, all 

conditions x1  x2 , x1  0, x2   0, f(0)  0 are satisfied. To conclude the proof of the existence 

of the cuboid with the given parameters o, S, it remains to ensure the conditions f(x1)  0, f(x2 ) 

 0 . They will also provide if for the given o, S (and therefore for k, l) it is possible to assign 

such parameter m  that the equation (3) has three real solutions. Thus we will define the real 

interval containing all possible values of the cuboid´s volumes with parameters o, S.  

18



 

Firstly, let us find  f(x1). We will substitute for x the expression 
3

l3kk
2
−−

 to the equation 

(3) and simplify it. After simplification we will get the relation  

                            mkl
27

9
l3kl

27

6
l3kk

27

2
k

27

2
)x(f

2223

1
−+−−−+−=  . 

We have already derived the condition k2 − 3l   0, values k, l are given from the assignment. 

Now it is necessary to set the parameter m , so for the inequality f(x1)  0 to be satisfied, it is 

necessary to hold 

m  l3kl
9

2
l3kk

27

2
kl

3

1
k

27

2 2223
−−−++− . 

Similarly, from the condition f(x2 )  0, we will derive the inequality  

m  l3kl
9

2
l3kk

27

2
kl

3

1
k

27

2 2223
−+−−+− . 

Joining both conditions, we will get the interval for m:                                        (4)   

m ( l3kl
9

2
l3kk

27

2
kl

3

1
k

27

2 2223
−+−−+− , l3kl

9

2
l3kk

27

2
kl

3

1
k

27

2 2223
−−−++− )   

In order for the last condition for m to be correct, it is necessary to verify the inequality 

between the borders of this interval. After substituting of the calculated values and further 

simplification we will get the inequation 

l3kl
9

4
l3kk

27

4 222
−− , 

Which is satisfied if and only if there applies k2 − 3l   0 . Thus we have proved that if the 

numbers k, l satisfy the inequality   

k2 − 3l   0 (i.e.. o2 − 24 S   0), 

then the given cuboid always exists, and all its possible volumes are determined by numbers 

from the interval (4). The condition k2 − 3l   0 is also sufficient. With the given o, 

S satisfying o2 − 24 S  0, we will choose m from the interval (4) and solve the equation (3). 

Its solution are real numbers which denote the lengths of the demanded cuboid´s edges.   

     Let us note that if the values satisfy o2− 24 S = 0, the expressions under the radical sign 

always equal zero. After calculation we get the following values: The only possibility is m = 

27

k
3

. Further x1 = x2 = 
3

k
, f(x1) = f(x2) = 0. After substitution m = 

27

k
3

, l = 
3

k
2

 (from k2 − 3l 

= 0), we can rearrange the equation (3) to the form (x − 
3

k
)3 = 0. From here there follows 

that the desired cuboid is a cube with the length of the edge a = 
3

k
 = 

12

o
.   

Exercise: a) Let  o = 24, S = 22. Then k = 6, l = 11. The condition k2 − 3l   0 is satisfied, so 

the cuboid with these parameters exists. However, it is not unambiguous, we have to choose 

the parameter m. While solving, we will find out that m   3
9

2
6,3

9

2
6 +− . If we choose 

m = 6, then the cubic equation x3 − 6x2 + 11x − 6 = 0 has three real solutions a = 1, b = 2, c 

= 3 and it is possible to solve it with the means of the school mathematics. The desired cuboid 

has dimensions 1, 2, 3. If we choose differently, e. g. m = 6,1, the equation x3 − 6x2 + 11x − 
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6,1 = 0 is best solvable with the help of computer technology; the roots (and thus the cuboid´s 

dimensions) are after rounding equal a = 1,054,  b =1,899,  c = 3,047.       

b) Let o = 24, S = 24, then k = 6, l = 12. There holds k2 = 3l. Then necessarily there must be 

m = 8, the equation (3) is  (x − 2)3 = 0, and therefore a = b = c = 2.   

       After solving the first problem of existence of the cuboid with the given parameters o, S, 

there appear other possibilities how to extend this topic. Such “grapes of problems” are dealt 

with in the book by J. Kopka [7]. Using the above given notation for the cuboid, we can set 

some of the three values k, l, m and solve the question of its existence and the lengths of its 

edges. Contrary to the already solved problem, other variants are much more difficult to 

calculate. In the described case (o, S are given), the parameter m does not appear in the first 

derivative of the left side of the equation (3), so we will use it while calculating the values 

f(x1), f(x2). Predominantly, the given values k, l appear in calculations. If one of these values  

k, l was not given, we can easily imagine the complexity of the given calculations. While 

“classical” method without using symmetric polynomials, and in this case as well, the process 

of solution exists. Let us outline briefly the solution of one of other variants of the cuboid´s 

problem: 

Problem 3: Let there be given two arbitrary positive numbers o, V. The assignment is to find 

out if there exists a cuboid with the lengths of edges a, b, c such that 4a + 4b + 4c = o, abc = 

V.     

     Using the above-mentioned notation, there are given numbers k = a + b + c, m = abc. The 

value l is not given, we have to determine it. We will choose the length of the edge c as the 

parameter.  

l = ab + ac + bc = ab + 
b

m
 + 

a

m
 = 

ab

bmamba
22

++
 = 

c

m

)ck(m
c

m
2

−+








= 
c

)ck(cm
2

−+
 . 

As m, c, k − c are positive numbers, the calculated value l is always positive. The obvious 

requirement for the choice of the parameter c is c   k.  

The procedure while solving the question of the cuboid´s existence and finding its dimensions 

with the given o, V (i.e.  k, m) is as follows: the choice of the number c , the calculation of the 

value l and the solution of the system of three equations with three unknown: 

a + b + c= k 

ab + ac + bc = l 

abc = m . 

The calculation is quite complicated and require great deal of patience. Let us give only the 

solution: For the chosen c (0 c k) other dimensions of the cuboid are determined by 

relations  

2

c

m4
)ck(ck

a

2
−−+−

= ,    
2

c

m4
)ck(ck

b

2
−−−−

= .  

Let us note that both relations always determine the positive value (
c

m
 = ab, k − c = a + b).  
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Exercise: o = 64, V = 12. Determine if the cuboid with these parameters exists. According to 

this assignment k = 16, m = 12. Let us choose c = 4. After calculation l = 51, a = 6 + 33 , b 

= 6 − 33 , which are the lengths of edges of one of the possible solutions.  

 
 
2 THE TRIANGLE PROBLEM 
 

Problem: Let be given two positive real numbers o, S. Decide if there exists a triangle with the 

lengths of sides a, b, c such that the number o expresses its circumference (o = a + b + c) and 

S expresses its area. If it exists, determine the lengths of sides of this triangle with the help of 

numbers o, S. We will always count on the fact that the lengths of sides a, b, c are positive 

non-zero real numbers satisfying the triangle inequality. 

Obviously, there applies o = a + b + c. The area of a triangle can be expressed with the help 

of its sides using Heron´s formula )cs()bs()as(sS −−−= , where 
2

o
s = , so 

2

c2o

2

b2o

2

a2o

2

o
S

−


−


−
= . Apparently, none of the factors under the radical sign is 

greater than 
2

o
; therefore, we get the first necessary condition for the existence of the triangle 

with the given parameters: 

S  
16

o
4

=  
4

o
2

. Further, we will continue by the method of analysis. Let us write Heron´s 

formula in the form 

2

cba

2

bca

2

acb

2

cba
S

−+


−+


−+


++
= .  

We will rearrange this relation. Both sides are non-negative numbers, so we can exponentiate 

the inequality (it is an equivalent operation). After further rearrangement we will get 

16S2 = 2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4. 

      Now let us use the elementary symmetric polynomials. With the above given denotation 

1 = a+b+c, 2 = ab+ac+ bc, 3 = abc we can get, using the theory of elementary symmetric 

polynomials (see e. g. [4]), get the relations: 

a4 + b4 + c4 = 1
4 − 41

22 + 22
2 + 413 ,         a

2b2 + b2c2 + a2c2 = 2
2 − 213 .  

After the substitution and rearrangement, we will get 

−1
4 + 41

22  − 813 = 16S2.  

Further, we will substitute 1 = o to the last relation; the relation will change to 

                                           16S2 + o4 = 4o22  − 8o3 .                                           (4) 

In this relation, numbers o, S are given in the assignment, numbers 2  and 3  represent 

parameters dependent on positive real numbers o, S. As the expression 4o22  − 8o3  has to 

be a positive number, both parameters are bound by the condition  o2  23  (*). The next 

possible procedure of solving the triangle is as follows: We will choose the value of the 

parameter 2  and with its help we will count the value of the parameter 3.. Knowing values 

1, 2 ,3,  we will again use the theory of symmetric polynomials, similarly to solving the 
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dimensions of the cuboid in the second part. Prior to the choice of the parameter 2 let us 

determine the restricting conditions.  

We know that the relation S = 0,5 ab sin   holds (and evidently there hold also two further 

relations obtained by the cyclic permutation). From this relation there follows 
ab

S2
sin =  

and from there the inequality 
ab

S2
   1 (the inequality 

ab

S2
   0 is obvious). Therefore there 

holds the inequality 2S   ab, similarly through the cyclic permutation 2S   ac, 2S   bc . 

Counting up all three inequalities we will get the necessary condition for the choice of 2  and 

thus the next necessary condition for the existence of the given triangle 6S   2 . After the 

choice of 2 , we will count from the relation (4) the value of 3 : 

                                                 3 = 
o8

oS16o4
42

2

2
−−

.                                        (5) 

The condition (*) can be verified easily. After substituting for 3 , we will find out that this 

condition is always satisfied. There appears a more interesting situation for the numerator of 

the fraction in (5), which has to be a positive number as well. From here we will calculate the 

next necessary condition for the choice of 2 , and therefore for the existence of the triangle: 

2    
2

42

o4

oS16 +
.  Now, let us sum up the acquired conditions:  

The condition for the assignment: S   
4

o
2

,  the condition for the choice: 
2

42

o4

oS16 +
  2, 

6S   . After the calculation 3 , we will verify the condition o2  23  .  

Now let us proceed to the question how to get the lengths of the triangular´s sides a, b, c 

knowing the values 1 ,2  ,3. Let us remark again that 1  is determined from the assignment 

as o,2  will be chosen according to the above given conditions and 3  will be counted from 

the relation (5). Knowing the relations between roots and coefficients of a polynomial, there 

follows that a, b, c are the roots of a cubic equation 

                                                x3 − o x2 + 2  x − 3  = 0                                                  (6). 

Now the question is if the cubic equation has three real roots. If the equation has them and 

these three numbers satisfy the triangle inequality, then these values are the desired lengths of 

triangle´s sides with parameters o, S. From these facts it is evident that the above given 

conditions are only necessary, but they are not sufficient. Everything depends on the solution 

of the equation (6). Further we have to deal with the next necessary condition, which we 

derive from the requirement for the equation (6) to have three real solutions. We will proceed 

similarly to the second part where we solved the same problem at the cuboid. The left side of 

the equation (6) will be denoted as f(x). For x = 0 there always applies f(x)   0  (because 

while satisfying the condition for the choice of 2 there applies that 3 is always a positive 

real number). Therefore, it suffices to secure that the first derivative of the function f(x) has 

two real roots x1, x2, while f(x1)   0 , f(x2)   0. For the first derivative there applies f \ (x) = 

3x2− 2ox +2 . This derivative has two stationary points x1,2 = 
3

3oo
2

2
−

,which are real 

numbers for o2 − 32    0, so  2    
3

o
2

. Thus we get another condition restricting the choice 

of the parameter 2 . The process of solving both inequalities f(x1)   0 , f(x2)   0  after 
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substituting the calculated values x1,2 is rather complicated and impractical; therefore we will 

not present it. We prefer to deal with the equation (6) in practical examples. 

 

In conclusion, let us sum up the results which we got while solving the triangle with the given 

parameters o, S: The given values have to satisfy S   
4

o
2

. Now let us choose the number 2 

satisfying the following conditions:  

2

42

o4

oS16 +
  2 ,   6S  2 ,   2    

3

o
2

.  

According to the relation (5), we will calculate the value of number 3  and verify the 

condition o2  23  . Let us solve the equation (6). If this equation has three real solutions 

and these solutions satisfy the triangle inequality, we will get the lengths a, b, c of the sides of 

the triangle, whose circumference equals o and whose area equals S.  

Examples: a) o = 14, S = 56   . While calculating we will determine that we have to choose 

the parameter 2   from the interval (50,1; 65,3 . Let us choose 2  = 63. After substituting to 

(5), we will determine 3    = 90. The equation (6) is in the form x3 − 14x2 + 63x − 90 = 0, its 

roots are real numbers 3, 5, 6. These three numbers satisfy the triangle inequality and are the 

solutions of the triangular problem. There applies o = 14, S = 1247    = 56 .  

b) o = 14, S = 56   . Let us choose 2  = 60, then let us calculate 3    = 69. The equation x3 − 

14x2 + 60x − 69 = 0 has complex roots; for the given choice of parameters such triangle does 

not exist. 

c) o = 21, S =
4

727
  , which is approximately 17,86. After substituting to the conditions of 

the choice, calculation and rounding, we will get the inequality which restricts the choice of  

2.  

      There has to hold 113   2    147. We will chose 2  = 144. Now while calculating 

according to (5), we will determine 3  = 324. We will compile the equation x3 − 21x2 + 144x 

− 324 = 0 and solve it. The solution are three positive numbers 6, 6, 9, which satisfy the 

triangle inequality. The desired triangle is a isosceles triangle; the arms are of the length 6 and 

the base is of the length 9. The proof will show that there really holds o = 21, 

S = 
4

727

16

5103

2

3

2

9

2

9

2

21
== .  

 

 

CONCLUSION 
 
     In the article we dealt with the problem of the existence and determination of dimensions of 

the cuboid and triangle with the given conditions. Although the results are not significant for 

geometry, for the students´ instructions they are suitable and useful. While solving the problems 

at lessons, the main concern does not consist in the originality, significance or importance of 

the derived mathematical formulas, but in the development of students´ knowledge and thinking 

in mathematics (thus acquiring the necessary competencies for studying and solving problems). 

Problem teaching has been dealt with in a lot of publications for years (see e.g. [2], [3]); 
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therefore, the topic from this article is suitable for this purpose. The topic can be extended to 

the existence of other geometric figures in the plane or space. 
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Abstract: In the paper, there is shown one examples of application of the rock polynomials.  
That example concerns permutations with limited conditions. The theory can be suitably used 
in the teaching of combinatorics. Some parts of this text are written in the structural form.  
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INTRODUCTION 
 
It is often necessary to solve a combinatorial problem from practice, which has many limiting 
conditions. Classical methods of solutions  tend to be long and complicated. For 
simplification, the theory of  the rook polynomials is suitable, which is explained in this 
article using one example. For understanding the following method it is enough to know how 
to move the rook. This fact is well known even to students of secondary schools and 
universities, and so it is possible to use the following method in the various modifications of 
examples from life for the enriching of lessons. Solving problems using permutations with 
limited conditions using the property of rook polynomials expands students´ knowledge of the 
given problem. The article could therefore be of benefit and inspiration for students and 
teachers in mathematics classes when discussing this topic. 
Hand in hand with the correct understanding of the mathematical text, the requirements for 
the intelligibility and suitability of learning material are increasing more and more. Therefore, 
the so-called structural form of the text is used in some parts of this paper.  
This topic was particularly popular with mathematicians at the turn of the century (see for 
example [1] , [2] , [3] , [4] , [5], [6], [7]. ) , but it is still very relevant. For example, authors in 
the paper [7] study the relationship between the rook vector of a general board and the 
chromatic structure of an associated set of graphs. They give algebraic relations between the 
factorial polynomials of two boards and their union and sum, and the chromatic polynomials 
of two graphs and their union and sum. 
 
1  ROOK POLYNOMIALS 
 
The term rook polynomial was coined by John Francis Riordan (1903 – 1988), the American 
mathematician dealing with the combinatorial analysis. Despite derivation of the name from 
chess, the impetus for studying rook polynomials is their connection with counting (partial) 
permutations with restricted positions. 
It is defined as a polynomial whose number of ways k non-attacking rooks can be arranged on 
m × n chessboard. It follows from it that no two rooks may be in the same row or columns. 
The rook endangers just fields of the chess-board, whose lie in the row and in the column, in 
their intersection the rook stands (see Fig. 1). 
 
Definition: The rook polynomial RB(x) of a chessboard B is the generating function for the 
numbers of arrangements of non-attacking rooks 
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𝑅𝐵(𝑥) = ∑ 𝑟𝑖(𝐵)𝑥𝑖min (𝑚,𝑛)

𝑖=0 ,     (1) 
 
where 𝑟𝑖(𝐵) is the number of ways to place k non-attacking rooks on the chessboard B. 
The rook polynomial of a chessboard of the type m × n is closely related to generalized 
Laguerre polynomial 𝐿𝑛𝛼(𝑥) by the identity 
 

𝑅𝑚,𝑛(𝑥) = 𝑛! 𝑥𝑛𝐿𝑛
(𝑚−𝑛)(−𝑥−1).    (2) 

 
Solutions to the associated Laguerre differential equations with υ ≠ 0 and k an integer are 
called the associated Laguerre polynomials 𝐿𝑛𝛼(𝑥) – see [8] and  [9] . 
 
The Laguerre polynomial (see [8] )  is given by the relation 
 

𝐿𝑛(𝑥) = ∑ �𝑛𝑖 �
(−1)𝑖

𝑖!
𝑛
𝑖=0 𝑥𝑖      (3) 

 
We can look at the first few rook polynomials. 
 

𝑅1(𝑥) = 𝑥 + 1       (4) 
𝑅2(𝑥) = 2𝑥2 + 4𝑥 +1 
𝑅3(𝑥) = 6𝑥3 + 18𝑥2 + 9𝑥 + 1 

     𝑅4(𝑥) = 24𝑥4 + 96𝑥3 + 72𝑥2 + 16𝑥 + 1 
… 

 
There can be a maximal number of non-attacking rooks on the  
chessboard. Indeed,  there  cannot  be placed more rooks  than 
the number of rows or columns on the chessboard  - hence the  
limit min (m,n). 
 
Let us denote: 

A chessboard of the type m × n … Bm,n, 𝑅𝐵𝑚,𝑛(𝑥) = 𝑅𝑚,𝑛(𝑥) 
A chessboard of the type n × n … Bn, 𝑅𝐵𝑛(𝑥) = 𝑅𝑛(𝑥) 

Fig. 1. The rook moves 
Source: own 

 
 
Example 1: Let us illustrate the case of positions of rooks for n = 2 in Fig. 2. No rook – 1 
possibility, 1 rook – 4 possibilities, 2 rooks – 2 possibilities, i.e.   𝑅2(𝑥) = 2𝑥2 + 4𝑥 +1. 
 

 
 

Fig. 2. The rook positions for n = 2 
Source: own 

 

    

             

  ▲  

    

   ▲    ▲        ▲    ▲ 

         ▲    ▲   ▲  ▲  
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2  MATH CELEBRATION 
 
In the following example, we will explain the aforementioned method and show its use in 
practice. 
 
Example 2: 6 different bottles with 6 different drinks are prepared at a known 
mathematician´s birthday party. In how many different ways can the 6 men celebrating this 
birthday choose a drink if we know the following facts? 
 
  

Adam  does not like  whisky 
Bob    brandy and whisky 
Danny    wine 
Ed    fernet and white wine 
Fred    rum 

   Carl     drinks all 
  

Tab. 1. The party and drinks 
Source: own 

 
Let us indicate: 
B … brandy, W … whisky, F … fernet, R … rum, RW … red wine, WW … white wine 
 
 

    This situation can be illustrated in a 6 × 6 gird. 
The men being honour are arrangement in rows, 
their drinks in a column. The coloured squares 
represent all prohibited possibilities. For example, 
conditions for Danny mean that the squares D4 and 
D5 will be coloured (Fig. 3). 
The given example is one of typical examples being 
solved by permutations. However, there exists a lot 
of bounded conditions complicated the given 
problem very well in this example. If we use the 
students´ knowledge of the rook moves, we can 
show them the different possibility of solving. 
Students can investigate the continuity between an 
algebraic theory (polynomials) and combinatorics 
(permutations). 

 
Fig. 3. The party situation 

Source: own 
 
 
Considering that the inclusion and exclusion principle for a finite set M and its subsets M1, 
M2, …, Mn, where |𝑀| is a number of elements of M and 𝑀𝑖

𝑐 is the complement of M, 
according to M, is held, we can write 
 

|𝑀1
𝑐 ∩ 𝑀2

𝑐 ∩ ⋯∩𝑀𝑛
𝑐| = |𝑀| + ∑ (−1)𝑖𝑃i𝑛

𝑖=1 ,              (5) 

A       

B       

C       

D       

E       

F       

 B W F BV CV R 
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where Pi , i = 1, …, n, are numbers of permutations. These numbers are determined by 
conditions (see for example [2] )  

    (6) 

𝑃1 = �|𝑀𝑖|
𝑛

𝑖=1

, 

 

𝑃2 = � �𝑀𝑖 ∩𝑀𝑗�
𝑛

𝑖,𝑗=1,𝑖<𝑗

, 

 

𝑃3 = � �𝑀𝑖 ∩𝑀𝑗 ∩ 𝑀𝑘�
𝑛

𝑖,𝑗,𝑘=1,𝑖<𝑗<𝑘

, 

 
… 
 

𝑃𝑛 = � �𝑀𝑖1 ∩ 𝑀𝑖 ∩ ⋯∩𝑀𝑖𝑛�
𝑛

𝑖1,⋯𝑖𝑛,=1,
 
 𝑖1<⋯<𝑖𝑛

= |𝑀1 ∩𝑀2 ∩⋯∩𝑀𝑛|. 

 
 
Thus, the total number of permutations is       

             (7) 

𝑝 = |𝑀|�(−1)𝑖𝑃𝑖
𝑛

𝑖=1

 

 
However, the method of calculating all permutations and their summation is rather lengthy, 
therefore the summaries Pi, which appear in the principle of inclusion and exclusion, will be 
determined by a different way. 
         
Let us imagine the given situation in Fig.3 and try to interpret that problem as a special rook 
problem and combine with the theory. Looking at Fig. 3 we can imagine that the selection of 
the i squares where each 2 squares do not lie in the same row and column is equivalent to the i 
non-endanger rooks each other (the sets M1, M2, …, Mn). If we can divide the chessboard B 
into  2 disjunct sets B1, and B2 then the final rook polynomial associated to the chessboard B 
is a  product of rook polynomials of  B1, and B2. The case, where the chessboard cannot be 
divided into final number of disjunct sets is solved for example in [3]. 
 
In our case, let us denote 𝐵1 = {𝐴𝑊,𝐵𝐵,𝐵𝑊}, 𝐵2 = {𝐷𝐵𝑉,𝐷𝐶𝑉,𝐸𝐹,𝐸𝐵𝑉,𝐹𝑅}. These sets 
are evidently finite and disjunctive. It means, that the set B is the set of all coloured squares 
(disabled options), B1 and B2 consist of the different rows and columns. 
 
Let 𝑟𝑖(𝐵), 𝑖 ≥ 1 be the number of possibilities,  how to place the i non-endanger rooks each 
other to the grid B, similarly 𝑟𝑖(𝐵1), resp. 𝑟𝑖(𝐵2), 𝑖 ≥ 1, for the grid B1 and B2. We also define 
 
 

𝑟0(𝐵1) = 𝑟0(𝐵2) = 𝑟0(𝐵) = 1.        (8) 
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Looking at Fig. 3 and knowing the rook moves, the numbers 𝑟𝑖(𝐵𝑖), 𝑖 ≥ 1 can be found very 
easily. There are 
 

𝑟1(𝐵1) = 3, 𝑟2(𝐵1) = 1,   𝑟𝑖(𝐵1) = 0  ∀ 𝑖 ≥ 3      (9) 
 
𝑟1(𝐵2) = 5, 𝑟2(𝐵2) = 7, 𝑟3(𝐵2) = 3  𝑟𝑖(𝐵2) = 0  ∀ 𝑖 ≥ 4 

 
in our specific example. We will combine these numbers: 
 
 

𝑟𝑖(𝐵) = 𝑟0(𝐵1) ∙ 𝑟𝑖(𝐵2) + 𝑟1(𝐵1) ∙ 𝑟𝑖−1(𝐵2) + ⋯+ 𝑟𝑖(𝐵1) ∙ 𝑟0(𝐵2), 𝑖 ≥ 1.    (10) 
 
Then 

𝑟1(𝐵) = 8, 𝑟2(𝐵) = 23, 𝑟3(𝐵) = 29, 𝑟4(𝐵) = 16, 𝑟5(𝐵) = 3,    (11) 
 

𝑟𝑖(𝐵) = 0  ∀ 𝑖 ≥ 6. 
 
 
The coefficients 𝑟𝑖(𝐵), 𝑖 ≥ 1, can be considered by the coefficients 
 

𝑐𝑖 = 𝑎0𝑏𝑖 + 𝑎1𝑏𝑖−1 + ⋯+ 𝑎𝑖𝑏0      (12) 
  
of a polynomial ∑ 𝑐𝑖𝑥𝑖𝑚

𝑖=0 , that was determined by a product of two polynomials 
 
 

∑ 𝑎𝑖𝑥𝑖 ,𝑛
𝑖=0   ∑ 𝑏𝑖𝑥𝑖 ,𝑛

𝑖=0   𝑟1(𝐵1) = 𝑎𝑖, 𝑟𝑖(𝐵2) = 𝑏𝑖,     (13) 
 

𝑎𝑖 = 0  ∀ 𝑖 > 𝑚1, 𝑏𝑖 = 0  ∀ 𝑖 > 𝑚2,   𝑚1,𝑚2 ∈ 𝐍. 
 
Thus 
 

 𝑟𝐵1(𝑥) = 𝑟0(𝐵1) + 𝑟1(𝐵1)𝑥 + ⋯𝑟𝑚𝑖
(𝐵1)𝑥𝑚𝑖 ,      (14) 

 
      𝑟𝐵2(𝑥) = 𝑟0(𝐵2) + 𝑟1(𝐵2)𝑥 + ⋯𝑟𝑚𝑖

(𝐵2)𝑥𝑚𝑖 , 
 
The polynomial 
 

𝑅𝐵(𝑥) = 𝑟0(𝐵) + 𝑟1(𝐵)𝑥 + ⋯𝑟𝑚𝑖
(𝐵)𝑥𝑚    (15) 

 
corresponds to the definition of the rook polynomial (1). 
 
 
According to the inclusion and exclusion principle, we can prove the following theorem (for 
example [2] ).  
 
 
 
Theorem: The total number of permutations with limited conditions from n different objects 
is equal to the sum 
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𝑝 = ∑ (−1)𝑖𝑟i(𝐵)(𝑛 − 𝑖)!𝑛

𝑖=0 ,      (16) 
 
where 𝑟i(𝐵)  are coefficients of the rook polynomial 𝑅𝐵(𝑥) of the chess board B illustrating 
the limited conditions. 
 
Going back to the  example above, we have got:        (17) 
 
𝑅𝐵(𝑥) = (1 + 3𝑥 + 𝑥2)(1 + 5𝑥 + 7𝑥2 + 3𝑥3) = 1 + 8𝑥 + 23𝑥2 + 29𝑥3 + 16𝑥4 + 3𝑥5      
 
The total different ways of choosing drinks is equal to 

(18) 

𝑝 = �(−1)𝑖𝑟i(𝐵)(6− 𝑖)!
6

𝑖=0

= 1 ∙ 6! − 8 ∙ 5! + 23 ∙ 4! − 29 ∙ 3! + 16 ∙ 2! − 3 ∙ 1! = 167. 

 
CONCLUSION 
 
The theory of rook polynomials can be interesting for students and can add variety to 
combinatorics classes.  In many cases, there are a lot of limiting conditions that can 
complicate the classical solution using permutations. The use of graph showing the moves of 
the rook on the chessboard makes the situation clearer and the solution to the problem can be 
more understandable for students. Then their solutions makes also simpler and shorter. 
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Abstract: In our study we want to point out the difference in mathematical success when 
error analysis is included in teaching mathematics, compared to the traditional teaching 
approach only presenting the right solutions. We believe that explaining and justifying correct 
and incorrect solutions to problems is more beneficial for achieving better results in 
mathematics education than justifying the right solutions. Such a teaching process can lead to 
a more informal and better understanding of mathematical concepts. Our pedagogical 
experiment findings confirmed that the presence of cognitive conflict through exercises solved 
with errors, followed by reflection and explanation of errors, leads to a deeper understanding 
of mathematical concepts. Error analysis can support a deeper and more comprehensive 
understanding of mathematical content as well as the essence of mathematics itself. 
 
Keywords: mathematical education, potential of the errors, common errors in mathematics, 
pedagogical experiment 
 
INTRODUCTION 
 
The error plays an important, sometimes even essential role in the student's life and each 
person. We also understand it as a specific cultural and social value. Therefore, it is necessary 
to think about, describe, and identify the place and role of error in learning theory. The 
emotional perception of error in the Christian tradition opposes the rational perception of error 
in ancient culture – here, the error is perceived as a means for a more correct, consistent, and 
more profound knowledge of reality. 
 
In our schools, the mistake or error is often perceived as an undesirable phenomenon, as 
something to be avoided, as something that both the teacher and the student are afraid of. 
However, the error understood in this way de–motivates (deactivates). Every failure or error 
in the teaching process can be productive for a person; it depends on the attitude taken in this 
situation. If mathematics teaching is understood only as the transfer of knowledge in the form 
of an explanation or lecture, the teacher must avoid any mistake - not sharing incorrect 
information (Kuřina, 2017). Any student's lack or error must be punished in such a case 
because he "failed to master the subject". 
 
If we use a creative, interactive, constructive teaching process, errors are like milestones 
along the way. They point in the right direction when looking for solutions and provide us 
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with the option to find the right results. Teaching is thus realized between two poles: Error 
cursed - error praised (Kuřina, 2017). In the introduction of our paper, we discuss how 
different teaching theories in the past understood errors in the learning process. Above all, we 
were interested in accepting the error as a positive, as a "potential for the student" in the 
future. We analyse different approaches of the teacher to the errors done by students.  
 
1 LITERATURE REVIEW 
 
In the professional literature, we find several studies on the use of error analysis in 
mathematics (Adamas, 2014; McLaren 2015). The study carried out for this article differs 
from previous studies in mathematical content, the number of teachers and students involved 
in the study, and online teaching. Loibl and Rummel (Loibl and Rummel, 2014) found that 
secondary school students became more aware of their knowledge gaps when analysing 
exercises with errors. Demonstrative comparisons of wrong-done tasks with correctly 
calculated tasks have filled learning gaps. Gadgil et al. (2012) conducted a study in which 
students who compared incorrectly solved tasks with correctly solved tasks gained a more 
remarkable ability to correct their errors than students who only received the correct 
procedures and problem-solving. This conclusion was subsequently supported by other 
researchers (Durkin et al., 2012; Kawasaki, 2010; Stark et al., 2011). Each of these 
researchers found students at all levels of mathematics education, from elementary school to 
secondary school students, who learned more than students who only faced the correct 
solutions of the task when analysing them and at the same time incorrect solutions to the task. 
This was particularly the case when the tasks with errors done were like the errors they made 
(Kawasaki, 2010; Stark et al. 2011) added that it is essential for students to be given sufficient 
explanation in well-designed examples before and in addition to erroneous tasks with errors. 
 
Hejný (Hejný et al, 2004) perceives error as an element of the teacher's educational strategy 
and emphasizes the requirement to suppress the student's unwanted fear of error, requiring the 
teacher not to perceive error as an undesirable phenomenon. The error detection and process 
to solve it is divided into six phases: 

• identification (error presence noted), 
• error localization, 
• factual analysis of the error (why the given idea is incorrect, or what is this wrong idea 

related to and with which other mathematical concepts it is connected), 
• elimination of the error 
• process analysis of the error (how this error occurred), 
• forming the conclusion.  

Research by Brown et al. (Brown et al., 2016) shows how analyzing student errors can help a 
teacher design an effective teaching approach to address student misconceptions and 
determine the correct concept, strategy, or procedure. Steps to perform error analysis: 

• Data collection 
• Identify error patterns 
• Determine the causes of errors 
• Choosing an educational strategy. 

The study by Sovia and Herman (Sovia and Herman, 2019) also focused on slower learners 
and specifically on the analysis of arithmetic solution errors in elementary schools in 
Indonesia. The results of the study showed that four types of errors: comprehension errors 
(50%), transformational errors (8%), procedural skill errors (17%) and coding errors (25%). 
This study was intended to provide mathematics teachers with material for teaching practice 
for slow learning students in the study of mathematics. Research by Kyaruzi et al (Kyaruzi et 
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al , 2020) investigated the impact of short-term teacher training on students' perceptions of 
their mathematics teacher's support for error situations as part of instruction, students' 
perceptions of error situations during learning, and mathematics teacher's actual error 
management practices in secondary schools in Tanzania . The results showed that 
mathematics teachers who received short-term professional development training appeared 
more error-friendly and used errors in teaching. 

 
Research by Khasawneh et al. (Khasawneh et al., 2022) examined the effect of learning based 
on mathematical error analysis on the proportional reasoning ability of elementary school 
students in Jordan. The results of the study showed that learning based on error analysis led to 
a significant improvement in proportional reasoning and contributed to providing students 
with a positive experience in learning mathematics. In light of these results, a set of 
recommendations for educational researchers, mathematics curriculum developers, and 
mathematics teachers was presented. Zhao et al.'s (Zhao et al., 2022) work investigated the 
effect of high school mathematics teachers' error orientations on their emotions and how 
teachers' error orientations and emotions were related to students' mathematics learning 
strategies in China. The findings highlight the importance of teachers' positive error 
orientation and positive emotions for students' mathematics learning. 
 
2 THE MOST COMMON ERRORS IN MATHEMATICS 
 
This section describes the errors that we have frequently seen in undergraduate mathematics. 
At the beginning of each semester, we notify students of these "chronically recurring" errors. 
Unfortunately, we must state that the situation is not improving; on the contrary, it is getting 
worse. In addition, the last two years affected by the corona crisis have worsened the situation 
as well. In carrying out our experiment, we therefore began by identifying the most frequently 
recurring mathematical errors of secondary school graduates’ students. We were also 
interested in other countries' situations and processed information from Eric Schechter's 
website. (More than 500 teachers from different countries published their observations on 
errors in the subject of mathematics in school), Paul Cox's website, as well as publications by 
Bradis, Minkovsky and E.A. Maxwell. We divided errors made by students into several 
categories. 
 
2.1 Communication errors 
 
These negative aspects can be relatively quickly eliminated by the teacher with sufficient 
supervision and thus improve the quality of work. We register them in the teacher-student 
relationship (or vice versa, student-teacher). The teacher often perceives the student as the 
enemy, is not open to students' questions, and is more focused on mathematics than on the 
student (whether and how the student understands the explained subject matter). The hidden 
negative attitude of the teacher implies the student´s fear, their inability to ask questions, 
engage in fruitful discussion, and be an active member of the teaching process. The teacher is 
often tempted to communicate more with gifted or active students. Nevertheless, these are 
exactly the slower ones in need of our help. If we focus on students' facial expressions while 
teaching them, it is relatively easy to grasp their understanding (or misunderstanding) – from 
their facial expressions. 
 
Many problems in teaching mathematics are also related to students' poor reading 
comprehension skills. In Slovakia, we have registered a significant reduction in pupils' and 
students' level of language culture in recent years (as evidenced by several researches within 
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the OECD countries – PISA). Students often do not understand the context or do not read the 
tasks to the very end or are distracted and inconsistent when reading them. In addition, the 
language of mathematics uses, in addition to the general language, specific terminology, the 
language of formulas, algebra and requires an understanding of nonverbal expression using 
diagrams, graphs and figures. 
 
In the category of communication errors it is also necessary to include problems related to the 
student's unreadable handwriting (the student does not understand, misread, own illegible 
notes or the teacher cannot read the content of the student's work). 
 
2.2 Algebra errors 
 
We can conclude that we register each of the errors we mention in this paragraph at all levels 
of mathematics education. Many of them are caused by the usual lack of attention or poor 
concentration of students at work. Sometimes it would be enough to count slower, with more 
focus on the task. Many errors could be avoided in this way. In general, we could divide these 
errors into errors at the primary level and errors caused by a lack of more profound theoretical 
knowledge. The errors are listed in a clear table indicating the source (cause) of the errors. 
1 −𝟕𝒙. (𝟐𝒙 − 𝟒) = −𝟏𝟒𝒙𝟐 − 𝟐𝟖𝒙 

𝟓(𝟑𝒙𝟐 − 𝟐𝟎) = 𝟏𝟓𝒙𝟐 − 𝟐𝟎 
𝟓𝒙 + 𝟏𝟓 = 𝟓(𝒙 + 𝟏𝟓) 

𝟏
𝟕𝒙

= 𝟕𝒙−𝟏 

 
The errors due to inattention 
When expanding brackets:  a standard 
error made is to multiply only out part of 
the brackets, error in sign, bad extraction 
before parenthesis. 
 

2 𝒙𝟓.𝒙−𝟓 = 𝟎 
𝒙 + 𝟓𝒙 = 𝟔𝒙𝟐 
𝟐𝟓𝒚𝟑

𝟓𝒚−𝟑
= 𝟓𝒚−𝟔 

(𝟐𝒙𝟒𝒚𝟑)𝟓 = 𝟑𝟐𝒙𝟗𝒚𝟖 
�𝟑𝟔𝒙𝟗 = 𝟔𝒙𝟑 
−𝟒𝟐 = 𝟏𝟔 

−(−𝒙)𝟐 = 𝒙𝟐 

 
Inability to correctly apply formulas for 
working with powers to specific tasks - 
formal knowledge. 
The multiplying of the indices that should 
have been added and to divide indices that 
should have been subtracted, the 
subtracting the indices in the wrong order, 
the problems using integer and rational 
exponents. 
 

3 (𝟑 + 𝒙)𝟐 = 𝟗 + 𝒙𝟐 
�𝟒 + 𝒙𝟐 = 𝟐 + 𝒙𝟐 

𝟑 ∙ (𝟒𝒙 − 𝟓)𝟐 = (𝟏𝟐𝒙 − 𝟏𝟓)𝟐 
𝒙𝟐 − 𝟏𝟔 = (𝒙 − 𝟖)(𝒙+ 𝟖) 
𝒙𝟐 − 𝟏𝟔 = 𝒙. (𝒙 − 𝟏𝟔) 
𝒙𝟐 − 𝟏𝟔 = (𝒙 − 𝟒)𝟐 

𝟐𝒙𝟐 + 𝟓𝒙 − 𝟑
𝒙 + 𝟑

=
(𝒙 + 𝟑). �𝒙 − 𝟏

𝟐�
𝒙 + 𝟑

 

 
The problems when calculating with 
formulas (𝒂 ∓ 𝒃)𝟐, 𝒂𝟐 − 𝒃𝟐 
The formal perception of both formulas 
leads to an incorrect decomposition into 
the product, or to incorrect modifications 
within more extensive algebraic 
expressions, the errors in determining the 
roots of a quadratic equation. 
 

4 𝟓𝒙𝟒 − 𝒙
𝒙

= 𝟓𝒙𝟒 − 𝟏 

𝟐𝒙 ∙ (𝒙 + 𝟐) − (𝒙𝟐 + 𝟏)
(𝒙 + 𝟐) = 𝟐𝒙 − (𝒙𝟐 + 𝟏) 

 
Incorrect the abbreviation of the 
mathematical expressions 
Here is an error that we have seen often, 
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𝟏
𝟐

. (𝒙 + 𝟓)
𝟏
𝟐 = 𝒙 + 𝟓 

𝒙𝟑

𝟑
= 𝒙 

 

but we do not have a clear idea why 
students make it. We conclude that the 
student does not have sufficient practice in 
editing expressions, a formal procedure 
prevails (without a deeper understanding, a 
mechanically "learned" procedure) 

5 (𝒙 + 𝒚)𝟐 = 𝒙𝟐 + 𝒚𝟐 

�𝒙 + 𝒚 = √𝒙 + �𝒚 

𝟏
𝒙𝟑 + 𝒚𝟑

=
𝟏
𝒙𝟑

+
𝟏
𝒚𝟑

 

𝒔𝒊𝒏(𝒙 + 𝒚) = 𝒔𝒊𝒏𝒙 + 𝒔𝒊𝒏𝒚 

(𝒇 ∙ 𝒈)´ = 𝒇´ + 𝒈´ 

𝒆𝒙+𝒚 = 𝒆𝒙 + 𝒆𝒚 

�(𝒇 ∙ 𝒈)𝒅𝒙 = �𝒇𝒅𝒙 ∙ �𝒈𝒅𝒙 

 
Formal generalization of the additive 
properties also to the expressions, that 
do not have this property 
A formula or notation may work properly 
in one context, but some students try to 
apply it in the broader context, where it 
may not work correctly at all. Robin 
Chapman also calls this type of error "crass 
formalism." Here are some examples that 
from our own teaching experience. 

 𝒔𝒊𝒏𝟑𝒙 = 𝒔𝒊𝒏𝒙𝟑 

𝒕𝒈−𝟏𝒙 =
𝟏
𝒕𝒈𝒙

 

𝒕𝒈−𝟏𝒙 = 𝒂𝒓𝒄𝒕𝒈𝒙 
(𝟑𝒔𝒊𝒏𝒙)´ = 𝒔𝒊𝒏𝒙. (𝟑𝒔𝒊𝒏𝒙−𝟏) 

�(𝒔𝒊𝒏𝒙)𝟑𝒅𝒙 =
(𝒔𝒊𝒏𝒙)𝟒

𝟒
+ 𝑪 

�
𝟏
𝒙
𝒅𝒙 = �𝒙−𝟏𝒅𝒙 = 𝒙𝟎 + 𝑪 

(𝒍𝒏𝒄𝒐𝒔𝒙)´ = −
𝟏

𝒔𝒊𝒏𝒙
 

𝒙𝟐 > 16 ⟺ 𝑥 > 4 
 
 

 
The various errors, the source of which 
is insufficient knowledge and 
understanding of the mathematical 
theory so necessary for the correct 
calculation of examples. 
Here we list some of the most common 
mistakes that students made on the 
Mathematical Analysis exam in the 1st 
year of bachelor's studies. We see that their 
source is clearly ignorance of 
mathematical theory. 

Table. 1. The most common errors occurring in mathematical calculations 
2.3 The most common mistakes in solving quadratic equations 
 
Too many students get used to just canceling out(i.e., simplifying) things to make their life 
easier. So, the biggest mistake in solving this kind of equation  

3𝑥2 = 6𝑥   
 is to cancel out an 𝑥 from both sides to get 

3𝑥 = 6 
𝑥 = 2. 

We missed the x = 0 in this attempt because we tried to make our life easier by “simplifying” 
the equation before solving it. While some simplification is a good and necessary thing, we 
should NEVER divide out a term as we did in the first attempt when solving. If we do this, we 
WILL lose solutions. The second chronically recurring error is the incorrect use of the 
formula √𝑥2 = |𝑥|. To solve an example   𝑥2 − 81 = 0 we very often get the wrong solution 
𝑥 = 9. Again, one of the roots of the equation was lost. 
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3 MATERIALS AND METHODS 
 
In the practical part of the article, we present the results of an experiment conducted among 
students of the 1st year of the The Faculty of Operation and Economics of Transport and 
Communications at the University of Žilina in 2022. A randomly selected group of 103 
repondents from among 850 students of the 1st year of study were given a test aimed at 
identifying errors when solving problems from high school mathematics. Our goal was to find 
out the level of students' knowledge after the almost two-year absence of face-to-face 
teaching due to the Covid pandemic. We also wanted to map which areas of the mathematics 
curriculum are the most problematic for the students, and then target the tutoring course on 
these topics. We reveal the causes (roots) of students' formal and incorrect understanding of 
mathematical concepts. We present and analyse the results of the diagnostic test and look for 
ways to eliminate them. 
 
The pedagogical experiment evidenced the participation of, in total, 103 students of 
specialization in the transport of the first year of the faculty PEDAS of ŽU in Žilina. In the 
first week of the semester, the students passed a diagnostic test. That consisted of 21 solved 
tasks of secondary school mathematics. Their task was to evaluate the correctness 
(incorrectness) of solving each of the twenty-one assigned tasks. They received 1 point for 
each correct statement. The maximum number of possible points was 21. The evaluation of 
the test reflects which errors are most common among students and which areas need to be 
deeper and more precisely focused on when teaching university mathematics. 
 
We also analyzed the students' ability to correct the errors found. Therefore, we also used an 
extended evaluation of the test: In case the student "found an error", he had the task of writing 
the correct result of the assignment in the free column. The assessment was: x - incorrect 
answer, 0 - correct answer (the assignment was calculated correctly), 00 - correctly evaluated 
error in the solution and subsequently correctly corrected the assignment, 0x - correctly 
evaluated error in the solution and subsequently incorrectly corrected assignment. 
 
The most successful student received 21 points and the worst achieved score was 2 points. 
Figure 1 presents a blank test sheet. The average number of points obtained by individual 
students is 7,98 points.  
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Fig. 1. Diagnostic test 

Source: own 
4 FINDINGS AND DISCUSSION  
 
We analyzed and evaluated the obtained results on two levels. On one hand, we evaluated the 
success of solving individual types of the tasks and on the other hand, the obtained scores of 
the students. Graph no. 1 presents the results with which the students solved the individual 
assignments. The success rate for each example is expressed in percentages.  

37



 
 

 

 
Graph 1. Diagnostic test 

Source: own 
 

As we can see, tasks 9 and 10 turned out the worst. More than 95% of the students commit a 
very frequent error, in which they „tear the square root" (√𝑥2 + 4 = 𝑥 + 2), and thus perform 
an unauthorized modification of the expression. It testifies to formal knowledge and ignorance 
of the rules for working with the powers and square roots. The errors of the type 13 follow 
� 1
7𝑥

= 7. 𝑥−1� . The student has a problem correctly perceiving a constant in front of a 
function if it is less than one. The students struggle with these problems primarily in 
derivation and integration, where it is necessary to rewrite the power function using a rational 
exponent. The respondents made the fewest errors when multiplying algebraic expressions 
and arithmetic operations of the expressions with powers with a natural exponent - that is, 
with basic knowledge of algebra. The analysis of the mentioned test gives us useful feedback. 
We have information about which algebraic adjustments require more time to explain the 
correct procedures. The students themselves perceived such a "repetition" of high school 
mathematics as appropriate and necessary. Especially after two pandemic years, we are 
registering deeper deficiencies in basic knowledge.  
 
What have we registered? It is not possible to replace intensive training – standard 
calculation, acquisition of systematic intensive training of work with algebraic expressions. 
To master mathematics, it is unthinkable to constantly cut math lessons. There were new 
mistakes, the origin of which is in the formal understanding of mathematical concepts, a 
deeper understanding and, above all, perception of the mutual connections of concepts is 
lacking. The "superficiality" of knowledge is literally readable from the occurring errors, the 
student does not know why the operations are performed as it is presented. It is not connected 
with a general formula, or on the contrary, cannot turn an abstract general mathematical 
formula into practice. 
 
For further data analysis, we also used the results of our experiment carried out in the 
academic year 2019-2020. A randomly selected group of 99 respondents, students of the 1st 
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year of The Faculty of Operation and Economics of Transport and Communications at the 
University of Žilina, was back then presented with the same diagnostic test. These students 
were not affected by the period of the Covid-19 pandemic during their studies, they thus 
completed full-time education. 
We therefore focused on testing hypothesis: Students educated in a full-time format (in 2020) 
achieved better results in solving the diagnostic test than students educated in a distance 
format (in 2022). 
 
Table 2 shows the descriptive statistics of the 2020 and 2023 ensembles according to the 
average number of points obtained by individual students. 
 

Groups Count Average Variance 
The test results in 

2020 
99 10,31 10,99 

The test results in 
2023 

103 
 

7,98 15,54 

Table 2. Test results by year 
 
To test the hypothesis, we perform a paired t-test. The observed characters are the characters 
X, Y, where X indicates the success of the correct solution in percentages for the individual 
tasks of the diagnostic test in 2020 and Y the success in solving the individual tasks in 2023. 
Thus, we have data  
 
𝑥𝑖 = 100; 80,6; 52,4; 73,8; 92; 32; 34; 31; 4,9; 4,9; 27,2;20,4;10,7;48;26,2;22,3;46;32;9,7;16,5;12,6 
𝑦𝑖 = 100; 90,6; 60,4; 75,8; 93; 25,2; 44,5; 9,1; 11; 35,2;25,4;20,3;52;61,2;25,3;48,1;30;11,3;15;20,2 
 
We tested the hypothesis of equality of mean values   𝜇1 , 𝜇2 with a paired test against the 
two-sided alternative hypothesis at the level of significance 𝛼 = 0,05. The tested problem has 
the form 

𝐻0:  𝜇1  = 𝜇2             versus           𝐻0:  𝜇1  ≠ 𝜇2 
 
The value of test statistics is 𝒕 =  −𝟐,𝟏𝟏 and p = 0,004.  H0 hypothesis was rejected. The 
averages of both samples on the selected significance level differs. When using the stated 
teaching methods, different results in diagnostic test were obtained.  
 
Unfortunately, the obtained results confirmed the deterioration of the mathematical 
knowledge of secondary school students after the pandemic period. It turns out that even the 
maximum effort of the teacher in the distance education of mathematics cannot replace the 
personal contact with the teacher in this education. Especially mathematics is a subject where 
the teacher's face-to-face explanation and clarification of concepts is indispensable. 
 
CONCLUSION 
 
Error analysis is a very important tool for a teacher. It helps determine what mistakes the 
student makes and why they make them. Using error analysis, a teacher can identify either 
deficiencies in a student's skills or their misconceptions about how to solve problems. 
Students' mathematical errors are related either to the student's lack of knowledge or to a 
misunderstanding of the problem. However, sometimes the student makes mistakes due to 
inattention or fatigue. In conclusion, we can state that we were pleasantly surprised by the 
feedback from the students, which was primarily positive. The students stated that the group 
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discussion and the analysis of errors in the tests helped them to correctly understand some 
mathematical operations that they had previously done mechanically and without a deeper 
understanding.  Students also noted that error analysis has more pros than cons. Analyzing 
solutions with errors gave students the opportunity to be more involved in the discussion, 
"explaining" and correcting the errors of the presented task and their own errors, which were 
activities that increased their interest in the learning process. The error acted as a specific 
"element of surprise" in teaching; such tasks interested them, motivated them more. An open 
discussion about solutions revealed the causes of errors and gave us many clues on how to 
work with students in the future. 
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Abstract: The contribution studies hyperstructions, carrier sets of which are formed by chains
of ordered groups of linear ordinary differential operators. Constructions presented in this con-
tribution, are based on classical concepts of interval analysis applied on the ordered additive
monoid of all open bounded intervals of real numbers.
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INTRODUCTION

Methods of the Interval Analysis (briefly called also “Interval Mathematics”) are a large and
important part of contemporary mathematics. Many papers on this topic were published in
1970s and 1980s, however some concepts of the theory had appeared earlier. Methods and
ideas of Interval Analysis are very constructive and useful, especially in applied mathematics.
The Interval Mathematics includes e.g. the interval arithmetic, the interval analysis, the interval
algebra, the interval topology, interval solutions of differential equations, solutions of problems
of numerical mathematics including the error analysis and the other areas – [11, 13, 15]. In
this contribution some ideas of functional analysis and theory of linear differential operators are
included and applied. Papers devoted to differential operators using intervals of functions of
one real variable include [4]. It is to be noted that the classical Interval Mathematics considers
intervals, also called segments, which are bounded as well as unbounded – [13]. Our paper deals
with open bounded intervals of the set R of all real numbers, which is a substantial modification
of the classical approach. The foundations of interval arithmetic were laid by R.E. Moore, the
topic first appeared in 1959, for more information see for example [15]. Paper [15] contains
algebraic structures of intervals, especially lattices.
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1 Preliminaries

A binary hypergroupoid is a non-empty set H endowed with a multivalued operation (called
also hyperoperation), which is a function mapping pairs (x,y) of elements of H to a non empty
subset x ◦ y of H. If this hyperoperation “ ◦ ” is associative, i.e., (x ◦ y) ◦ z = x ◦ (y ◦ z) for any
triad of elements x,y,z ∈H (where we define x◦M =

⋃
y∈M

x◦y for any x ∈H and any non empty

subset M ⊂ H), the hypergroupoid (H,◦) is called a semihypergroup. If a semihypergroup
(H,◦) satisfies the reproduction axiom, i.e., if there is

x◦H = H = H ◦ x

for each element x∈H, the corresponding semihypergroup is called hypegroup. It is easy to see
that the reproduction axiom is equivalent to the following condition: For any pair a,b ∈H there
exists a pair x,y∈H such that b∈ a◦x, b∈ y◦a. Notice that first paper on hypergroups appeared
in 1934, written by the French mathematician Marty, discussed some properties of hypergroups
and applied these to groups and algebraic functions. The algebraic theory of hypergroups has
been investigated in many countries including the Czech Republic; see e.g. [3, 5, 6, 9, 10, 17,
18, 19, 20, 21, 22].

In our contribution we also deal with multiautomata considered as actions of hypergroupoids
on sets defined using so called Generalized Mixed Associativity Condition. Recall that by a
quasi-ordered set we mean a set endowed with a binary relation which is reflexive and transi-
tive. If this relation is moreover antisymmetric, we speak about an ordered set. By an ordered
semigroup we mean a triad (S, ·,≤), where (S, ·) is a semigroup on the set S and the ordering
≤ on the set S has a substitution property on (S, ·), i.e., if for any quadruple of elements a,b,c,d,
such that a≤ b, c≤ d, there is a · c≤ b ·d.

By a group we mean a classical structure, i.e., a non-empty set endowed with an associative
binary operation with the neutral element and with uniquely defined inverse element to any
element of the group. The interval arithmetic is taken from [13] and also from papers [11, 12,
15].

In what follows we use interval constructions – this theory is mentioned as important part
of applied mathematics. Algebraic investigations of posets of interval are well-known from
literature – see e.g. [13, 15] and further papers included in references of the mentioned paper.

2 Groups of differential operators ordered in chains

A certain motivation for the study of sequences of hypergroups and their homomorphisms can
be traced to ideas of classical homological algebra which comes from the algebraic descrip-
tion of topological spaces. A homological algebra assigns to any topological space a family of
abelian groups and to any continuous mapping of topological spaces a family of group homo-
morphisms. This allows us to express properties of spaces and their mappings (morphisms) by
means of properties of groups or modules or their homomorphisms. Notice that a substantial
part of homology theory is devoted to the study of exact short and long sequences of the above
mentioned structures.

It is crucial that one understands the notation used in this paper. Recall that we study, by
means of algebra, linear ordinary differential operators. Therefore, our notation, which follows
the original model of Borůvka and Neuman, uses a mix of algebraic and functional notation.

First, we denote intervals by J and regard open intervals (bounded or unbounded). Systems
of functions with continuous derivatives of order k on J are denoted by Ck(J); for k = 0 we
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write C(J) instead of C0(J). We treat Ck(J) as a ring with respect to the usual addition and
multiplication of functions. We denote by δi j the Kronecker delta, i, j ∈ N, i.e., δii = δ j j = 1
and δi j = 0, whenever i ̸= j; by δi j we mean 1−δi j. Since we will be using some notions from
the theory of hypercompositional structures, recall that by P(X) (sometimes denoted as expX)
one means the power set of X while (P)∗(X) means P(X)\ /0.

We regard linear homogeneous differential equations of order n≥ 2 with coefficients, which
are real and continuous on J, and – for convenience reasons – such that p0(x)> 0 for all x ∈ J,
i.e., equations

y(n)(x)+ pn−1(x)y(n−1)(x)+ · · ·+ p0(x)y(x) = 0. (1)

By An we, adopting the notation of Neuman [16], mean the set of all such equations.

Example 1. The above notation can be explained on an example taken from [16], in which
Neuman considers the third-order linear homogeneous differential equation

y′′′(x)−
q′1(x)

q1(−x)
y′′(x)+(q1(x)−1) y′(x)−

q′1(x)
q1(x)

y(x) = 0.

on the open interval J ∈ R. One obtains this equation from the system

y′1 = y2

y′2 =−y1 +q1(x)y3

y′3 =−q1(x)y2

Here q1 ∈C+(J) satisfies the condition q1(x) ̸= 0 on J. In the above differential equation we
have n = 3, p0(x) =−

q′1(x)
q1(x)

, p1(x) = (q1(x)−1)2 and p2(x) =−
q′1(x)

q1(−x) . It is to be noted that the
above three equations form what is known as set of global canonical forms for the third-order
differential equation on the interval J.

Denote Ln(pn−1, . . . , p0) : Cn(J)→ Cn(J) the above linear differential operator defined by

Ln(pn−1, . . . , p0)y(x) = y(n)(x)+
n−1

∑
k=0

pk(x)y(k)(x), (2)

where y(x) ∈ Cn(J) and p0(x) > 0 for all x ∈ J. Further, denote by LAn(J) the set of all such
operators, i.e.,

LAn(J) = {L(pn−1, . . . , p0)|pk(x) ∈ C(J), p0(x)> 0}. (3)

By LAn(J)m we mean subsets of LAn(J) such that pm ∈ C+(J), i.e., there is pm(x) > 0
for all x ∈ J. If we want to explicitly emphasize the variable, we write y(x), pk(x), etc. How-
ever, if there is no specific need to do this, we write y, pk, etc. Using vector notation p⃗(x) =
= (pn−1(x), . . . , p0(x)), we can write

Ln(p⃗)y = y(n)+
n−1

∑
k=0

pky(k). (4)
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Writing L(p⃗) ∈ LAn(J) (or L(p⃗) ∈ LAn(J)m) is a shortcut for writing Ln(p⃗)y ∈ LAn(J) (or,
Ln(p⃗)y ∈ LAn(J)m).

On the sets of linear differential operators, i.e., on sets LAn(J), or their subsets LAn(J)m,
we define some binary operations, hyperoperations or binary relations. This is possible because
our considerations happen within a ring (of functions).

For an arbitrary pair of operators L(p⃗),L(⃗q) ∈ LAn(J)m, where p⃗ = (pn−1, . . . , p0), q⃗ =
= (qn−1, . . . ,q0), we define an operation “◦m ” with respect to the m-th component by L(p⃗)◦m
L(⃗q) = L(⃗u), where u⃗ = (un−1, . . . ,u0) and

uk(x) = pm(x)qk(x)+(1−δkm)pk(x) (5)

for all k = n−1, . . . ,0, k ̸= m and all x ∈ J. Obviously, such an operation is not commutative.
Moreover, apart from the above binary operation we can define also a relation “≤m ” com-

paring the operators by their m-th component, putting L(p⃗) ≤m L(⃗q) whenever, for all x ∈ J,
there is

pm(x) = qm(x) and at the same time pk(x)≤ qk(x) (6)

for all k = n−1, . . . ,0. Obviously, (LAn(J)≤m) is a partially ordered set. At this stage, in order
to simplify the notation, we write LAn(J) instead of LAn(J)m because the lower index m is kept
in the operation and relation. The following lemma is proved in [4].

Lemma 1. Triads (LAn(J),◦m,≤m) are partially ordered (noncommutative) groups.

Now we can use Lemma 1 to construct a (noncommutative) hypergroup. In order to do
this, we will need the following lemma, known as the Ends lemma; for details see e.g., [18].
Notice that a join space is a special case of a hypergroup–in this paper we speak of hypergroups
because we want to stress the parallel with groups.

Lemma 2. Let (H, ·,≤) be a partially ordered semigroup. Then (H,∗), where ∗ : H ×H →
P∗(H) is defined, for all a,b ∈ H by

a∗b = [a ·b)≤ = {x ∈ H|a ·b≤ x},

is a semihypergroup, which is commutative if and only if “ · ” is commutative. Moreover, if
(H, ·) is a group, then (H,∗) is a hypergroup.

Thus, to be more precise, defining

⋆m : LAn(J)×LAn(J)→P(LAn(J)), (7)

by

L(p⃗)⋆m L(⃗q) = {L(⃗u)|L(p⃗)◦m L(⃗q)≤m L(⃗u)} (8)

for all pairs L(p⃗),L(⃗q) ∈ LAn(J)m, lets us state the following lemma.

Lemma 3. Triads (LAn(J),⋆m,≤m) are (noncommutative) hypergroups.

Notation 1. Hypergroups (LAn(J),⋆m) will be denoted by HLAn(J)m for an easier distinction.
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Remark 1. As a parallel to (2) and (3) we define

L(qn, . . . ,q0)y(x) =
n

∑
k=0

qk(x)y(k)(x),q0 ̸= 0,qk ∈ C(J) (9)

and
LAn(J) = {(qn, . . . ,q0) | q0 ̸= 0,qk(x) ∈ C(J)} (10)

and, by defining the binary operation “◦m" and “≤m" in the same way as for LAn(J)m, it is
easy to verify that also LAn(J) are noncommutative partially ordered groups. Moreover, given
a hyperoperation defined in a way parallel to (8), we obtain hypergroups (LAn(J)m,⋆m), which
will be, in line with Notation 1, denoted HLAn(J)m.

Now, we will construct certain mappings between groups or hypergroups of linear differen-
tial operators of various orders. The result will have a form of sequences of groups or hyper-
groups.

Define mappings Fn : LAn(J)→ LAn−1(J) by

Fn(L(pn−1, . . . , p0)) = L(pn−2, . . . , p0)

and φn : LA(J)→ LAn−1(J) by

φn : (L(pn−1, . . . , p0)) = L(pn−2, . . . , p0).

It can be easily verify that both Fn and φn are, for an arbitrary n≥ 2, group homomorphisms.
Evidently, LAn(J)⊂LAn(J),LAn−1(J)⊂LAn(J) for all admissible n∈N. Thus we obtain

two complete sequences of ordinary linear differential operators with linking homomorphisms
Fn and φn :

LA0(J)
id0,1 // LA1(J)

id1,2 // LA2(J)
id2,3 // . . .

LA0(J)

id0

OO

LA1(J)

id1

OO

F1oo

φ1
ii

LA2(J)

id2

OO

F2oo

φ2
hh

. . .
F3oo

φ3
gg

. . .LAn−2(J)
idn−2,n−1 // LAn−1(J)

idn−1,n // LAn(J)
idn,n+1 // . . .

. . .LAn−2(J)

idn−2

OO

LAn−1(J)

idn−1

OO

Fn−1oo

φn−2
ii

LAn(J)

idn

OO

Fnoo

φn
hh

. . .
Fn+1oo

φn+1
gg

(11)

where idk,k+1, idk are corresponding inclusion embeddings.
Notice that this diagram, presented at the level of groups, can be lifted to the level of hy-

pergroups. In order to do this, one can use Lemma 3 and Remark 1. However, this is not
enough. Yet, as Lemma 4 suggests, it is possible to show that the below presented assigning
is functorial, i.e., not only objects are mapped onto objects but also morphisms (isotone group
homomorphisms) are mapped onto morphisms (hypergroup homomorphisms).

Lemma 4. Let (Gk, ·k,≤k),k = 1,2 be preordered groups and f : (G1, ·1,≤1)→ (G2, ·2,≤2) a
group homomorphism, which is isotone, i.e., the mapping f : (G1,≤1)→ (G2,≤2) is order-
preserving. Let (Hk,∗k),k = 1,2 be hypergroups constructed from (Gk, ·k,≤k),k = 1,2 by
Lemma 2, respectively. Then f : (H1,∗1) → (H2,∗2) is a homomorphism, i.e., f (a ∗1 b) ⊆
f (a)∗2 f (b) for any pair of elements a,b ∈ H1.
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Proof. There is more reasoning in [6].

Consider a sequence of partially ordered groups of linear differential operators

LA0(J)
F1←− LA1(J)

F2←− LA2(J)
F3←− ·· ·

· · · Fn−2←−− LAn−2(J)
Fn−1←−− LAn−1(J)

Fn←− LAn(J)
Fn+1←−− LAn+1(J)← ···

given above with their linking group homomorphisms Fk : LAk(J)→ LAk−1(J) for k =
1,2, . . . Since mappings Fn : LAn(J)→ LAn−1(J), or rather

Fn : (LAn(J),◦m,≤m)→ (LAn−1(J),◦m,≤m),

for all n≥ 2, are group homomorphisms and obviously mappings isotone with respect to corre-
sponding orderings, we immediately get the following theorem.

Theorem 1. Suppose J⊆R is an open interval, n∈N is an integer n≧ 2,m∈N such that m≦ n.
Let (HLAn(J)m,∗m) be the hypergroup obtained from the group (LAn(J)m,◦m) by Lemma 2.
Suppose that Fn : (LAn(J)m,◦m)→ (LAn−1(J)m,◦m) are the above defined surjective group-
homomorphisms, n ∈ N,n ≧ 2. Then Fn : (HLAn(J)m,∗m)→ HLAn−1(J)m,∗m) are surjective
homomorphisms of hypergroups.

Proof. See the reasoning preceding the theorem (also in [8]).

Chains from the second row of (11) will be briefly denoted by ⟨LAn(J),Fn;n ∈ N0⟩.

Remark 2. It is easy to see that the second sequence from (11) can be mapped onto the sequence
of hypergroups

HLA0(J)m
F1←−HLA1(J)m

F2←−HLA2(J)m
F3←− ·· ·

· · · Fn−2←−−HLAn−1(J)m
Fn−1←−−HLAn(J)m← ···

This mapping is bijective and the linking mappings are surjective homomorphisms Fn,. Thus
this mapping is functorial.

3 Classical mathematical structures using for constructions of hyperstructures

Denote by In(R) the set of all open bounded intervals (a,a)⊆R (cf. denoting that is used in the
Interval Analysis – [11, 12, 13, 15]) and denote In0(R) = In(R)∪{0}. As has been mentioned
above, elements of the interval arithmetic can be taken from titles [11, 12, 13, 15]. So, it is well
known from elementary real analysis that if a,b,c,d are real numbers such that a < b,c < d,
then

(a,b)+(c,d) = (a+ c,b+d),

moreover, if 0≤ a < b and 0≤ c < d, then

(a,b) · (c,d) = (ac,bd).

Evidently, the groupoid (In0(R),+) is a commutative monoid with the neutral element 0 ∈ R.
We describe a certain hyperstructural constructure based on centres of intervals. First, let us

consider an interval J0 ∈ In(R), J0 = (a,b), a < b, where a,b ∈ R. The center of this interval
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J0 is the number m(J0) = m(a,b) = 1
2(a+b). Consider the following special system S (J0) of

subintervals of J0 = (a,b):

S (J0) = {(c,d); [c,d] ∈ (a,m(a,b))× (m(a,b),b)}∪{J0}.

For any bounded subset M ⊆ R we denote by Covin+(M) the intersection of all bounded inter-
vals covering the set M, i.e.,

Covin
+
(M) =

⋂
{J;J ∈ In(R),M ⊂ J}.

We define a mapping
Φ0 : In(R)×In(R)→ expIn(R)

by the rule Φ0(K,L) = {Covin+(K∪L∪S);S ∈S (J0)} for any pair of intervals K,L ∈ In(R).
Now we define a binary hyperoperation

∗0 : CLA×CLA→ expCLA

by

⟨LAn(K),Fn;n ∈ N0⟩ ∗0 ⟨LAn(L),Fn;n ∈ N0⟩= {⟨LAn(I),Fn;n ∈ N0⟩; I ∈Φ0(K,L)}

for any pair of chains ⟨LAn(K),Fn;n∈N0⟩, ⟨LAn(L),Fn;n∈N0⟩ belonging to the system CLA.
Evidently we have obtained

Proposition 1. The hyperstructure (CLA,∗0) is a commutative hypergroupoid.

In the monograph [3, chap. IV, p. 150, Theorem 2.1], there is presented and proved the
following theorem:

Theorem 2.

1◦ Let (G,R) be a quasi–ordered set. For any pair a,b ∈ G define

a∗R b = R(a)∪R(b) = R({a,b}).

Then (G,∗R) is an extensive commutative hypergroup.

2◦ Let (G,R), (H,S) be quasi–ordered sets, f : (G,R)→ (H,S) be isotone mapping. Then
f : (G,∗R)→ (H,∗S) is a hyperhomomorphism.

Proof.

1◦ From the reflexivity of the quasi–ordering R there follows immediately a,b ∈ a ∗R b for
every pair a,b ∈ G, thus a∗R b ̸= /0, the hyperoperation ∗R is extensive and the commuta-
tivity of this hyperoperation is also evident. We verify associativity:

Suppose a,b,c ∈ G. There holds

a∗R (b∗R c) = a∗R (R(b)∪R(c)) = a∗R R({b,c}) =
⋃

x∈R({b,c})
a∗R x =

= R(a)∪
⋃

x∈R({b,c})
R(x) = R({b,c})∪R(a) = R({a,b,c}) = c∗R (b∗R a) = (a∗R b)∗R c.
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Further, for each a ∈ G there holds

a∗R G =
⋃

x∈G

a∗R x = R(a)∪
⋃

x∈G

R(x) = G,

thus the hyperoperation satisfies the reproduction condition, consequently (G,∗R) is an
extensive commutative hypergrupoid.

2◦ If f : (G,R)→ (H,S) is an isotone mapping then for any pair of elements a,b∈G we have
f (a∗R b) = f (R(a)∪R(b)) = f (R(a))∪ f (R(b))⊆S ( f (a))∪S ( f (b)) = f (a)∗S f (b).

Now, let us consider the following concrete interval J = (0,2). We assigne Jk = (k,k+ 2),
k ∈ Z and moreover we define a binary relation ≤ on CLA by

⟨LAn(Jm),Fn;n ∈ N0⟩ ≤ ⟨LAn(Jk),Fn;n ∈ N0⟩,

where Jm = (m,m+2), Jk = (k,k+2), if there exists n ∈ N0 such that k = m+2n. It is easy to
show that the relation≤ is a quasi–ordering, i.e., it is reflexive and transitive on the system CLA.
Indeed, if n = 0 then k = m. Now suppose ⟨LAn(Jm),Fn;n ∈ N0⟩ ≤ ⟨LAn(Jk),Fn;n ∈ N0⟩ and
⟨LAn(Jk),Fn;n ∈N0⟩ ≤ ⟨LAn(Js),Fn;n ∈N0⟩, which means k = m+2n, s = k+2l for suitable
numbers n, l ∈ N0. Then s = m+2(n+ l), thus ⟨LAn(Jm),Fn;n ∈ N0⟩ ≤ ⟨LAn(Js),Fn;n ∈ N0⟩.

For A,B ∈ In0(R) define A◦B = [A+B)≤ = {K ∈ In0(R);A+B≤ K} and for

⟨LAn(K),Fn;n ∈ N0⟩⊞ ⟨LAn(L),Fn;n ∈ N0⟩= {⟨LAn(I),Fn;n ∈ N0⟩; I ∈ K ◦L}.

Theorem 3. Hypergroupoids (In0(R),◦), (CLA,⊞) are isomorphic commutative hypergroups.

The monograph [3] Theorem 1.4, page 147 (chapter IV) yields the following assertion:

Theorem 4. The following conditions are equivalent for an ordered semigroups (S, ·,≤) :

1◦ For any pair of elements a,b ∈ S there exists a pair of elements c,c′ ∈ S such that b · c≤
a, c′ ·b≤ a.

2◦ The semigroup (S,∗) (defined by the rule a∗b = [a ·b)≤) satisfies the reproduction con-
dition (i.e., t ∗S = S∗ t = S, for each element t ∈ S), thus (S,∗) is a hypergroup.

The monoid (In0(R),+), which is ordered by the ordering “ ≤ ”, satisfies the above con-
dition 1. Consider intervals A = (−1,4), B = (2,3) ∈ In0(R). For the interval Y = (−4,−1) ∈
In0(R) we have B+Y = (2,3)+(−4,−1) = (−2,2)< (−1,4) = A and for X = (−3,−2) there
holds A+X = (−1,4)+(−3,−2) = (−4,2)< (2,3) = B.

Remark 3. It is to be noted that for each pair of intervals A,B ∈ In(R) there exists infinitely
many solutions of the above considered inequalities. On the other hand there exists infinitely
many pairs of intervals A,B ∈ In(R) such that the equation A+X = B has no solution within
In(R). Simple counterexample: If A = (1,4), B = (2,3) then the equation A+X = B has no
solution in In(R). This fact also implies that the grupoid (In0(R),+) is monoid (commutative)
with the neutral element 0 ∈ R, not a group.

Theorem 5. For any pair of intervals A,B∈ In(R) there exists a pair of intervals X ,Y ∈ In(R)
such that A+X ≤ B and B+Y ≤ A.
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Proof. Suppose that (a,a) = A ∈ In(R), (b,b) = B ∈ In(R) are intervals of real numbers. Let
us denote X = (x1,x2), Y = (y1,y2). Suppose a ∈ R is a positive number and b ∈ R such that
b− a−a < b < b−a. Denote x1 = b− a−a, x2 = b. Then we have x1 < x2 and X = (x1,x2)≤
(b− a,b− a) = B−A. The inequality X ≤ B−A implies A+X ≤ B. Similarly, if c ∈ R, 0 < c
and d ∈R are numbers satisfying the condition a−b−c< d < a−b then denoting y1 = a−b−c
and y2 = d, we have y1 < y2 and Y = (y1,y2) = (a− b− c,d) ≤ (a− b,a− b) = A−B, which
implies B+Y ≤ A. This inequality completes the proof.

As a specific application of Theorem 5 we obtain the following construction.
Let ◦ : In0(R)×In0(R)→ expIn0(R) and ⊞ : CLA×CLA→ expCLA be binary hyper-

operations defined by
A◦B = {K ∈ In0(R);A+B≤ K}

for each pair of intervals A,B ∈ In0(R) and

⟨LAn(J),Fn;n ∈ N0⟩⊞ ⟨LAn(L),Fn,n ∈ N0⟩= {⟨LAn(I),Fn;n ∈ N0⟩; I ∈ J ◦L}.

for any pair of chains ⟨LAn(J),Fn;n ∈ N0⟩, ⟨LAn(L),Fn;n ∈ N0⟩ ∈ CLA. Then we obtain:

Theorem 6. Hypergroupoids (In0(R),◦), (CLA,⊞) are isomorphic commutative hypergroups.

Proof. Notice that the presented constructions are based on results related to the Ends lemma;
see e.g. [3, 18, 19, 20]. The algebraic structure (In0(R),+,≤) is a commutative (additive)
ordered monoid with subtraction, which means that the equality A+B = A+C implies B = C
for A,B,C ∈ In0(R). By Theorem 5, the monoid (In0(R),+,≤) satisfies the condition 1◦ of
Theorem 4. Since by Theorem 3 the hypergroupoid (In0(R),◦) is a commutative semigroup,
by condition 2◦ of Theorem 4 the semigroup (In0(R),◦) is a commutative hypergroup. Now
define a mapping

f : In0(R)→ CLA by f (L) = ⟨LAn(L),Fn;n ∈ N0⟩

for each interval L ∈ In0(R).
Suppose J,K ∈ In0(R) are arbitrary intervals such that J ̸= K. Then ⟨LAn(J),Fn;n ∈N0⟩ ̸=

̸= ⟨LAn(K),Fn;n ∈ N0⟩ thus f (J) ̸= f (K). Further for any ⟨LAn(J),Fn;n ∈ N0⟩ ∈ CLA then
J ∈ In0(R), thus the mapping is also surjective, hence f is bijective. Now we show that the bi-
jection f : (In0(R),◦)→ (CLA,⊞) is a strong homomorphism. Let J,K ∈ In0(R) be arbitrary
intervals. Then

f (J ◦K) = f ({L ∈ In0(R);J+K ≤ L}) = { f (L);L ∈ In0(R);J+K ≤ L}=

= {⟨LAn(L),Fn;n ∈ N0⟩;J+K ≤ L}= ⟨LAn(J),Fn;n ∈ N0⟩⊞ ⟨LAn(K),Fn;n ∈ N0⟩=

= f (J)⊞ f (K).

Hence the mapping f : In0(R)→ CLA is an isomorphism of the hypergroupoid (In0(R),◦)
onto the hypergoupoid (CLA,⊞). Since the hypergroupoid (In0(R),◦) is a commutative hy-
pergroup, the hypergroupoid (CLA,⊞) is a commutative hypergroup as well.

Theorem 7. Let (S, ·,≤) be an ordered semigroup. The binary hyperoperation ∗ : S×S→ expS
defined by the rule a ∗ b = [a · b)≤ is associative. The semigroup (S,∗) is commutative if and
only if the semigroup (S, ·) is commutative.
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Proof. Suppose a,b,c ∈ S are arbitrary elements. First, we show that⋃
t∈[b·c)≤

[a · t)≤ =
⋃

x∈[a·b)≤

[x · c)≤. (⋇)

Consider s ∈
⋃

t∈[b·c)≤
[a · t)≤, thus a · t0 ≤ s for a suitable element t0 ∈ S, b · c ≤ t0. Then

(a · b) · c = a · (b · c) ≤ a · t0 and putting x0 = a · b, we have x0 · c ≤ s, x0 ∈ [a · b)≤, thus s ∈
[x0 · c)≤ ⊂

⋃
x∈[a·b)≤

[x · c)≤. Similarly, we obtain the the opposite inclusion thus the equality (⋇)

is valid. Now, we obtain with respect to (⋇)

a∗ (b∗ c) =
⋃

t∈[b∗c)≤

[a∗ t)≤ =
⋃

t∈[b·c)≤

[a · t)≤ =
⋃

x∈[a·b)≤

[x · c)≤ =
⋃

x∈[a∗b)≤

[x∗ c)≤ = (a∗b)∗ c,

hence the hyperoperation ∗ is associative. Further, if the semigroup (S, ·) is commutative, then
(S,∗) is commutative as well. If (S,∗) is commutative, then for any pair of elements a,b ∈ S
there holds [a · b)≤ = a ∗ b = [b · a)≤ which implies b · a ≤ a · b and immediately a · b ≤ b · a,
thus a ·b = b ·a.

4 Multiautomata formed by actions of hypergroupoids

Recall that a multiautomaton is a triad (S,H,δ ), where H is a hypergrupoid, S is a nonempty
set and δ : S×H→ S is a mapping such that

δ (δ (s,a),b) ∈ δ (s,a ·b) (GMAC)

for any triad (s,a,b)∈ S×H×H, where δ (s,a ·b) = {δ (s,x);x∈ a ·b}. The mapping δ is called
the transition function or the next–state function or the action of the input hypergroupoid or the
phase hypergroupoid H on the state or phase set S. The acronym GMAC means the Generalised
Mixed Associativity Condition [2].

It is to be noted that (In0(R),+) is a quasi-linear space over the field R formed by all open,
bounded intervals (a,a)⊂ R (set of which is denoted by In(R)).

The actions of that quasi-linear space are the following presented in [13, part 1.2.2, p.
12,13].

(Q1) α(A+B) = αA+αB

(Q2) (α +β )A = αA+βA if |α +β |= |α|+ |β |

(Q3) α(βA) = (αβ )A. Moreover 1 ·A = A, 0 ·A = 0

(Q4) A+B = A+C =⇒ B =C (this implication is valid within (In(R),+))

We have A+B = A+C, i.e., (a,a)+ (b,b) = (a,a)+ (c,c) i.e., (a+ b,a+ b) = (a+ c,a+
c) ⇐⇒ a+b = a+c, a+b = a+c –since a,a,b,b,c,c ∈R then b = c,b = c, i.e., B = (b,b) =
(c,c) = C. Hence the axiom (Q4) is valid. So the monoid (In0(R),+) is a quasi–linear space
satisfying also the condition (Q4), i.e., the monoid (In0(R),+) is with the subtraction.

In the classical monograph [13], part 1.2.2 p. 15, which is devoted to quasi–linear spaces
(which is in fact the additive commutative semigroup (In(R),+) – here K + L = {x+ y;x ∈
K,y ∈ L} for any K,L ∈ In(R)) there is simply defined an ordering on the system of intervals
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I(M) of an ordered linear space M. As usually P(M) is a set of all subsets of the space M. So,
in [13] there is defined, in systems I(M),P(M), the relation <:

A < B iff ((∀a ∈ A)∨ (∀b ∈ B|a < b).

There holds inclusions
(M,<)⊂ (I(M),<)⊂ (P(M),<),

however systems (I(M),<),(P(M),<) are not lattices. Moreover in [13], p.15 there is also
defined a relation ≤ for intervals A,B ∈ I(M) :

If A = (a,b),B = (c,d) then

A≤ B iff (∀x ∈ A∃y ∈ B|x≤ y)∧ (∀y′ ∈ B∃x′ ∈ A|x′ < y′).

Also, there holds
A≤ B iff (a≤ b)∧ (b≤ d).

We transfer the above defined relation onto systems In(R) and P(In(R)). However, we should
once again emphasiz that we consider open bounded intervals of R.

Now we put H = (CLA,∗),S = In0(R) = In(R)∪{0}. The transition function

δ : In0(R)× (CLA,∗)→ In0(R)

can be defined in the following way: For ⟨LAn,Fn;n ∈ N0⟩ ∈ CLA and K ∈ In0(R) we put
down

δ (K,⟨LAn,Fn;n ∈ N0⟩) = K + J = [a,a]+ [b,b] = [a+b,a+b],

where [a,a] = K, [b,b] = J. Since K+J ∈ In(R), we obtain that the triad (In0(R),(CLA,∗), δ )
is a multiautomaton with the input hypegroupoid (CLA,∗) and phase set In0(R) of all bounded
open intervals in the set R including the zero. Indeed, consider an arbitrary chains ⟨LAn(J1),Fn;
n ∈ N0⟩ ∈ CLA,⟨LAn(J2),Fn;n ∈ N0⟩ ∈ CLA and an arbitrary interval K ∈ In0(R). Then we
have

δ (δ (K,⟨LAn(J1),Fn;n ∈ N0⟩),⟨LAn(J2),Fn;n ∈ N0⟩) =
= δ (K + J1,⟨LAn(J2),Fn;n ∈ N0⟩) = K + J1 + J2.

For the purpose of the construction of a multiautomaton fulfilling the GMAC condition,
we define a binary hyperproduct which is a certain modification of the above one: Suppose
⟨LAn(J1),Fn;n ∈N0⟩, ⟨LAn(J2),Fn;n ∈N0⟩ is a pair of arbitrary chains from the system CLA.
We have defined In0(R) = In(R)∪{0} and

⟨LAn(J1),Fn;n ∈ N0⟩ · ⟨LAn(J2),Fn;n ∈ N0⟩=
= {⟨LAn(I),Fn;n ∈ N0⟩; I ∈ {J1 + J2 + J;J ∈ In(R)}}.

Evidently, the pair (CLA, ·) is a commutative hypegroupoid. Further, we define a mapping

δ : In0(R)×CLA→ In0(R)

by δ (K,⟨LAn(J),Fn;n ∈ N0⟩) = K + J ∈ In0(R)

Then we obtain the following result:

Theorem 8. The triad (In0(R),(CLA, ·),δ ) is a multiautomaton, that satisfies the Generalized
Mixed Associativity Condition (GMAC).
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Proof. Let K ∈In0(R) be an arbitrary interval or K = 0, let ⟨LAn(J1),Fn;n∈N0⟩, ⟨LAn(J2),Fn;
n ∈ N0⟩ be arbitrary chains belonging to CLA. Then we have

δ (δ (K,⟨LAn(J1),Fn;n ∈ N0⟩, ⟨LAn(J2),Fn;n ∈ N0⟩)
= δ (K + J1,⟨LAn(J2),Fn;n ∈ N0⟩)
= K + J1 + J2 = K + J1 + J2 +0 ∈ {K +S;S ∈ {J1 + J2 + J;J ∈ In0(R)}
= δ (K,⟨LAn(I),Fn;n ∈ N0⟩; I ∈ {J1 + J2 + J;J ∈ In0(R)})
= δ (K,⟨LAn(J1),Fn;n ∈ N0⟩ · ⟨LAn(J2),Fn;n ∈ N0⟩).

Hence the Generalized Mixed Associativity Condition (GMAC) is satisfied.

CONCLUSION

As has been mentioned, some papers discussing topics included in our contribution present
ideas which originated in the scientific school of Otakar Borůvka, František Neuman and their
collaborates who studied ordinary differential equations using the algebraic approach based on
the group theory. Our study thus represents a certain generalization of this direction. General-
ization of presented constructions can be obtained in several directions. Firstly, we can consider
the direct product of ordered groups which with constructions of chains of groups of differen-
tial operators. This approach can be generalized up to direct products of finite but sufficiently
many factors. Alternatively, one can investigate differentiable functions of n variables in an
n–dimensional space having partial derivatives of sufficiently high order, and then restrict such
functions onto one–dimensional intervals. Nevertheless these directions will be explored in
some forthcoming papers. The authors’ contributions to the creation of the article are equal -
33%.
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On the teaching of the infinite series in high school
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Abstract: In the article, we will describe the development of the treatment of the topic of infinite
series in selected textbooks and books for high school students in our territory. We will show
some of Zeno’s paradoxes, an approach to terminology and different approaches to processing
this issue.

Keywords: infinite series, teaching, high school, Zeno’s paradoxes.

INTRODUCTION

Infinite series are not listed in the State Educational Program in the educational standard for the
course of mathematics – grammar school with a four-year and five-year educational program,
nor in the Target requirements for the knowledge and skills of high school graduates in mathe-
matics. They are missing even in our current grammar school textbooks. In this paper we shall
look at how is this topic developed in selected textbooks and books for high school students in
the last decades in the territory of Czechoslovakia, the Czech Republic and the Slovak Repub-
lic in 16 textbooks, publications and related problem books. In my research I focused on the
following indicators:

• Motivational tasks from history (Zeno’s paradoxes)

• Interpretation of an infinite geometric series

• Introduction of the concepts of series, infinite series, terms of the series

• Introduction of the designation of an infinite series and its double meaning (series and the
sum of the series)

• Construction of a sequence of partial sums

• Investigation of the limits of the sequence of partial sums

• Divergence of infinite series

• Methods of denoting sequences

• Theorems about infinite series (necessary conditions of convergence, etc.)

• Definition of the term infinite geometric series

• The formula for the sum of an infinite geometric series

• Proof of the formula for the sum of an infinite geometric series

• Conditions for the divergence of an infinite geometric series
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• Examples of evaluating sums and using infinite geometric series

• Determining the sum of an infinite series
∞

∑
n=1

1
n(n+1)

• Conversion of a periodic decimal number to a fraction

• Determining the convergence of an infinite series of the Grandi series type

• Adding and rearranging adjacent members of infinite series

• Infinite series with geometric interpretation

• Problems on infinite geometric series with a parametric quotient

• Harmonic series and its divergence

• Infinite series related to fractals

• The quantity of solved and unsolved problems

In this paper, we shall focus on two of these points – motivation and terminology.

1 Motivation

As taught by didactic theory, the topic and its interpretation begin with motivational tasks in
most publications. Usually, it is a task related to one of the infinite geometric series. In the over-
whelming majority, it is the series ∑

∞
n=1

(1
2

)n
. However, there are different approaches to this

series. The first (predominant) approach is straightforward – a suitable sequence is presented
(often with a geometric interpretation) and the individual terms of the series are calculated. The
second approach is historical and based on the so-called Zeno’s paradoxes. These have almost
disappeared from current textbooks – in the present they can be found only in one Czech text-
book, and therefore we will focus on them.

Zeno of Elea (ca. 490 – 430 BC) was a Greek mathematician and philosopher. He aimed to
disprove the idea of motion by presenting a series of examples in which, with the help of logi-
cal arguments, he went from the assumption of motion to logical contradictions. According to
historical sources, there were approximately 20 such examples, but only four were preserved.
Their wording differs in various literary sources, and in this paper we present the spelling ac-
cording to Kline (1990) based on Aristotle’s quotations:

Dichotomy: The first asserts the nonexistence of motion on the ground that that which is in
motion must arrive at the half-way stage before it arrives at the goal.

Achilles and the Tortoise: It says that the slowest moving object cannot be overtaken by the
fastest since the pursuer must first arrive at the point from which the pursued started so that
necessarily the slower one is always ahead. The argument is similar to that of the Dichotomy,
but the difference is that we are not dividing in halves the distances which have to be passed
over. Aristotle then says that if the slowly moving object covers a finite distance, it can be over-
taken for the same reason he gives in answering the first paradox.

2
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Arrow: The third paradox he [Zeno] spoke about, is that a moving arrow is at a standstill. This
he concludes from the assumption that time is made up of instants. If it would not be for this
supposition, there would be no such conclusion.

Stadium: The fourth is the argument about a set of bodies moving on a race-course and passing
another set of bodies equal in number and moving in the opposite direction, the one starting
from the end, the other from the middle and both moving at equal speed; he [Zeno] concluded
that it follows that half the time is equal to double the time. The mistake is to assume that two
bodies moving at equal speeds take equal times in passing, the one a body which is in motion,
and the other a body of equal size which is at rest, an assumption which is false.

We will show how the infinite geometric series is hidden in the first two paradoxes. In the Di-
chotomy paradox, let us imagine that we had to travel a unit distance from point A to point B.
To travel this distance, we must first travel half of the total (unit) distance – we must reach the
middle of the path – the midpoint of segment AB, which we denote S1. Apparently |S1B| = 1

2 .
Now we apply the same principle to line segment S1B, which is one-half in length – we need to
get to the middle of segment S1B. We will mark this point as S2. Its distance from point B is
|S2B|= 1

2 ·
1
2 =

1
4 , so |S2B|= (1

2)
2. We can continue this way and get that in the n-th step we will

be at point Sn, while its distance from point B will be |SnB|= (1
2)

n. Thus, in each step, we will
be a certain positive distance away from point B, and thus we will never arrive at point B. To
get there, we would have to take an infinite number of steps in finite time, which is impossible.

The paradox of Achilles and the tortoise works on a similar principle – if Achilles gives the
tortoise a certain head start, it takes a certain amount of time to reach the point from which
got started (regardless of how many times faster Achilles is, this time is non-zero). During this
time, however, the turtle moves a certain non-zero distance. Achilles must run over this dis-
tance again in non-zero time, and so on. But this means that the tortoise will always be a certain
distance ahead of Achilles, so Achilles will never overtake it.

The solution to these two paradoxes lies in the way how we understand infinity. Zeno’s argu-
mentation is based on the so-called potential infinity. However, from the point of view of the
so-called actual infinity, we can count the individual distances and even if there are infinitely
many of them, we can cross them in a finite time (in both paradoxes, the length of the section
also shortens the time required to cover it, which is why it is possible to cover an infinite number
of sections in a finite time).

These problems with grasping the concept of infinity probably caused paradoxes to disappear
from the textbooks, and in the only one where they remain, they occur at the very end of the
exposition. This classification has the advantage that the students already have their first experi-
ence with evaluating sums of infinite series, and thus they can calculate when the ”key moment”
will occur – when ”what moves will reach the end”, or when Achilles overtakes the tortoise.
At the same time, we also see that both analyzed paradoxes, Dichotomy and Achilles and the
Tortoise, also lead to the sum of an infinite geometric series.

2 Terminology

Most of the authors first define the terms of the infinite series, sequence of partial sums, and then
define the sum of the infinite series as the limit of its sequence of partial sums. The definition
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of Smı́tal and Šalát (1986, p. 46) is very interesting and unique:

Let an ∈ R (n = 1,2, . . . ). We call the sequence (sn)
∞

n=1, sn = a1 +a2 + · · ·+an (n = 1,2, . . .)
an infinite series (more briefly, a series)

∞

∑
n=1

an = a1 +a2 + · · ·+an + · · ·

In this definition, the infinite series is not introduced as a formal infinite sum written using the
symbol ∑, but as a specially constructed sequence (sequence of partial sums). This approach
can cause a significant problem with the philosophical grasp of this concept for high school (as
well as university) students. This is the reason why this definition cannot be recommended for
use in high school. The intention of the authors is described in detail by Šalát (1975) – the goal
of this definition was to give a real definition of a series without the indefinite term ”symbol”,
a definition that ultimately converts the concept of a series into a concept of a set. This un-
usual definition then facilitated the interpretation of other concepts (among them, for example,
the concepts of convergence/divergence, which are usually previously introduced for a general
sequence, the limit of which in our case is called the sum of a series, or the term a series with
a bounded sequence of partial sums, which can be shortened to the bounded series).

Similarly, it is necessary to emphasize to the students that by the symbol ∑
∞
n=1 an we must un-

derstand not only the number as the sum of this series but also the series as such. Jarnı́k (1979),
Odvárko (2019), Odvárko, O., & Řepová, J. (1986), Smida (1988), Tlustý (2020) and Zemek &
Zemková (2017) directly draw attention to this fact. Other authors do not address this issue.

The issue of comparing terms of infinite sums and placing parentheses in them is only men-
tioned in current textbooks by Odvárko (2019) and Zemek and Zemková (2017). In the last-
mentioned textbook, the authors show that a suitable rearrangement, or placing parentheses
between members of this series, can lead to three different sums (0, 1, and −1) of the Grandi
series ∑

∞
n=1 (−1)n.

The concept of divergent infinite series is introduced by all authors except Smida (1988). Liška
(2019a, p. 88 – 95) limits himself to infinite geometric series in his entire publication, and we
will not draw attention to this fact further. In their publications, the authors mentioned most
often as examples of divergent series an infinite geometric series with a quotient greater than
1, a Grandi series, or an infinite series formed from members of an arithmetic sequence with
a non-zero difference. Apart from books intended for gifted students (where its divergence is
also proven), the harmonic series is mentioned only by Zemek and Zemková (2017).

From a terminological point of view, it is interesting to observe the denotation of sequences –
in publications published before 2000, curly brackets are the preferred marking (the exception
is Smı́tal and Šalát (1986), where, however, the preference for round brackets can be attributed
to the fact that this publication was published as a script written on a typewriter machine, and
therefore curly brackets would have to be written by hand; this theory is also supported by other
publications of these authors from the same period, where they use curly brackets), in publi-
cations published after 2000 (the exception is Králiková (2006)), the authors use round brackets.

Theorems on the convergence of infinite series can be found in only three publications – Hecht
(2000), Králiková (2006) and Smı́tal & Šalát (1986). The first one is more than 20 years old,
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last two books are focused on talented students. In the textbooks that are currently used we
cannot find any theorems on the convergence.

CONCLUSION

Infinite series are an interesting and stimulating topic that should not be missing in the secondary
school curriculum (even more so in the grammar school curriculum). With a little effort, it is
possible to carry out an interpretation of the topic (of course, not in its entire breadth, but to the
extent that will be sufficient for understanding the issue) even during one lesson, which is also
proven by Kudláček, Válka & Burian (1963) for the first and second-year secondary industrial
schools for workers. This book shows that the foundations of infinite series can be taught during
only one lesson.
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Abstract: This paper is inspired by one task on the sum of a special infinite series on the
Berkeley Math Circle. The task was to determine the sum of all the unit fractions that have
denominators with only factors consisting of all prime divisors of the number 2002, i.e. the
primes 2, 7, 11, 13. We updated this task to determine the sum of reciprocals of all products
generated by all prime divisors of the number 2022. This series can be consider as the reduced
harmonic series generated by three primes 2, 3, 337. The sum of this series was calculated
analytically by two methods and also numerically by using the programming language of the
computer algebra system Maple 2022. By these three attempts we obtained the same result.
Finally, we generalized the obtained result and presented a formula for the sum of these series
with n generating positive integers different from 1.

Keywords: infinite series, geometric series, harmonic series, reduced harmonic series, CAS
Maple 2022.

INTRODUCTION

The Berkeley Math Circle is one of the most famous math circles in North America. Math
circles can be characterized as a learning space where participants engage in the depths and
intricacies of mathematical thinking, propagate the culture of doing mathematics, and create
knowledge. To reach these goals, participants partake in problem-solving. Some circles involve
competition, such as the Berkeley Math Circle, others do not.

The Berkeley Math Circle study material from 2002 (see [1]) includes the following unsolved
task 5.4 from the paragraph 5 Harmonic Series:

2002 = 2 · 7 · 11 · 13. Find the sum of all the unit fractions
that have denominators with only factors from the set
{2,7,11,13}. That is, find the following sum:
1
2
+

1
4
+

1
7
+

1
8
+

1
11

+
1

13
+

1
14

+
1

16
+

1
22

+
1

26
+

1
28

+ · · · .

Infinite series are still a hot topic in mathematical analysis. In addition to harmonic series – see
e.g. papers [2], [3], [4], [5], [6], attention has recently been paid to time series – see e.g. papers
[7], [8], [9], [10] and Fourier series – see e.g. paper [11].
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In this article, that was written last year, we solve an analogous task related to the year
2022. Because this task concerns the harmonic series and the so called reduced harmonic series
or modified harmonic series, let us recall the necessary notions from infinite series theory.

1 BASIC NOTIONS

For any sequence {ak} of numbers the associated infinite series or more briefly series is defined
as the sum

∞

∑
k=1

ak = a1 +a2 +a3 + · · · .

The sequence of partial sums {sn} associated to a series
∞

∑
k=1

ak is defined for each n as the sum

sn =
n

∑
k=1

ak = a1 +a2 + · · ·+an .

The series
∞

∑
k=1

ak converges to a limit s if and only if the sequence of partial sums {sn} converges

to s, i.e. lim
n→∞

sn = s. We say that the series
∞

∑
k=1

ak has a sum s and write
∞

∑
k=1

ak = s.

The sum of the reciprocals of some positive integers is generally the sum of unit fractions. For
example the sum of the reciprocals of the square numbers (the Basel problem) is π2/6:

∞

∑
k=1

1
k2 =

1
12 +

1
22 +

1
32 +

1
42 + · · ·=

π2

6
.
= 1.644934 ,

Generally,

ζ (s) =
∞

∑
k=1

1
ks

is the Riemann zeta function, which is a function of a complex variable s. This series converges
when the real part of s is greater than 1. Thus ζ (2) = π2/6.

The sum of the reciprocals of the cube numbers is the Apéry’s constant ζ (3) which is given by
the formula

∞

∑
k=1

1
k3 =

1
13 +

1
23 +

1
33 +

1
43 + · · ·

.
= 1.202057 .

The reduced harmonic series is defined as the subseries of the harmonic series, which arises by
omitting some its terms. As an example of the reduced harmonic series we can take the series
formed by reciprocals of primes and number one

1+
1
2
+

1
3
+

1
5
+

1
7
+

1
11

+
1

13
+ · · · .

This reduced harmonic series is divergent. The first proof of its divergence was made by Leon-
hard Euler (see e.g. book [12]).

A very interesting example of reduced harmonic series are Kempner’s series Ka (see [13]). The
Kempner series is a modification of the harmonic series, formed by omitting all terms whose
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denominator expressed in base 10 contains a digit a. That is, it is the sum of fractions 1/n
where n takes only values whose decimal expansion has no digit a. The series K9 with omitted
the 9 digit, i.e. the series

K9 =
1
1
+

1
2
+ · · ·+ 1

8
+

1
10

+
1
11

+ · · ·+ 1
18

+
1
20

+
1

21
+ · · ·+ 1

88
+

1
100

+
1

101
+ · · · ,

was first studied by A. J. Kempner in 1914 in the paper [14].

This series is interesting because of the counter-intuitive result that unlike the harmonic series it
converges. Kempner showed this value was less than 80. The upper bound of 80 is very crude,
and F. Irwin showed in 1916 in the paper [15] by a slightly finer analysis of the bounds that
the value of this Kempner series is between 22.4 and 23.3. T. Schmelzer and R. Baillie in their
paper [16] showed that up to 20 decimals. The actual sum is 22.92067661926415034816.

2 THE FIRST METHOD OF ANALYTICAL SOLUTION

Let us consider the following series T formed of all the unit fractions that have denominators
with only prime factors of the number 2022, i.e. with factors from the set {2,3,337}, as

2022 = 2 ·3 ·337 .

We gradually calculate the sum S of the series T by rearranging it, appropriately dividing it into
subseries and using the well-known formula for the sum of an infinite geometric series. The
series T is thus the infinite series of the form

T =
1
2
+

1
3
+

1
337

+

(
1
22 +

1
32 +

1
3372 +

1
2 ·3

+
1

2 ·337
+

1
3 ·337

)
+

(
1
23 +

1
33 +

1
3373 +

+
1

22 ·3
+

1
22 ·337

+
1

32 ·2
+

1
32 ·337

+
1

3372 ·2
+

1
3372 ·3

+
1

2 ·3 ·337

)
+

+

(
1
24 +

1
34 +

1
3374 +

1
23 ·3

+
1

23 ·337
+

1
33 ·2

+
1

33 ·337
+

1
3373 ·2

+
1

3373 ·3
+

+
1

22 ·3 ·337
+

1
32 ·2 ·337

+
1

3372 ·2 ·3
+

1
22 ·32 +

1
22 ·3372 +

1
32 ·3372

)
+ · · · .

(1)

Assume that its sum S is finite and that the series (1) converges. Because all its terms are
positive, then the series (1) converges absolutely and so we can rearrange it. For easier determi-
nation the sum S it is necessary to rearrange it and divide it into six subseries T2, T3, T337, T2·3,
T2·337 and T3·337, where

T2 =
1
2
+

1
22 +

1
23 +

1
24 + · · · =

1
2

(
1+

1
2
+

1
22 +

1
23 + · · ·

)
, (2)

T3 =
1
3
+

1
32 +

1
33 +

1
34 + · · · =

1
3

(
1+

1
3
+

1
32 +

1
33 + · · ·

)
, (3)

T337 =
1

337
+

1
3372 +

1
3373 + · · · =

1
337

(
1+

1
337

+
1

3372 + · · ·
)
, (4)
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T2·3 =
1

2 ·3
+

1
22 ·3

+
1

32 ·2
+

1
2 ·3 ·337

+
1

23 ·3
+

1
33 ·2

+

+
1

22 ·3 ·337
+

1
32 ·2 ·337

+
1

3372 ·2 ·3
+

1
22 ·32 + · · · ,

i.e.

T2·3 =
1

2 ·3

(
1+

1
2
+

1
3
+

1
337

+
1
22 +

1
32 +

1
3372 +

1
2 ·3

+
1

2 ·337
+

1
3 ·337

+ · · ·
)
, (5)

T2·337 =
1

2 ·337
+

1
22 ·337

+
1

3372 ·2
+

1
23 ·337

+
1

3373 ·2
+

1
22 ·3372 + · · · ,

i.e.

T2·337 =
1

2 ·337

(
1+

1
2
+

1
337

+
1
22 +

1
3372 +

1
2 ·337

+ · · ·
)
, (6)

T3·337 =
1

3 ·337
+

1
32 ·337

+
1

3372 ·3
+

1
33 ·337

+
1

3373 ·3
+

1
32 ·3372 + · · · ,

i.e.

T3·337 =
1

3 ·337

(
1+

1
3
+

1
337

+
1
32 +

1
3372 +

1
3 ·337

+ · · ·
)
. (7)

Now, we determine unknown sum S by means of the sums of the series (2) – (7). By the formula

s =
a

1−q
, (8)

for the sum s of the convergent infinite geometric series with the first term a and with the ratio q,
|q|< 1, we get the sums S2, S3 and S337 of the series (2) – (4):

S2 =
1
2
· 1

1−1/2
=

1
2
· 2

2−1
= 1 , (9)

S3 =
1
3
· 1

1−1/3
=

1
3
· 3

3−1
=

1
2
, (10)

S337 =
1

337
· 1

1−1/337
=

1
337
· 337

337−1
=

1
336

. (11)

It is clear that the sum S2·3 of the series (5) we can write in the form

S2·3 =
1

2 ·3
(
1+S

)
=

1
6
(
1+S

)
. (12)

The sums S2·337 and S3·337 of the series (6) and (7) are the sums of all the unit fractions that
have in denominators all powers of the product of two primes (2, 337 and 3, 337).

The expression in the brackets of the sum S2·337 of the series (6) we rearrange and write as
the sum of number 1 and three subseries T2, T337 and T2·337 with the sums S2 = 1, S337 = 1/336
and S2·337. Therefore we have the equation

S2·337 =
1

2 ·337

(
1+1+

1
336

+S2·337

)
.
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From this equation we obtain 673S2·337 = 673/336, thus

S2·337 =
1

336
. (13)

In the same way as above, for the sum S3·337 we obtain the equation

S3·337 =
1

3 ·337

(
1+

1
2
+

1
336

+S3·337

)
.

From this equation it follows that 1010S3·337 = 505/336, thus

S3·337 =
1

672
. (14)

By the assumption of the absolute convergence of the series (1) we can write its sum S in the
form

S = S2 +S3 +S337 +S2·3 +S2·337 +S3·337 .

According to (9) – (14) we get the equation

S = 1+
1
2
+

1
336

+
1
6
(1+S)+

1
336

+
1

672
.

Multiplying both sides of this equation by 672, we obtain the equation

672S = 672+336+2+112+112S+2+1 ,

i.e. 560S = 1125, thus we get

S =
225
112

= 2.00892859714 . (15)

Interestingly, the numerator of the fraction 225/112 is 1 greater than twice the denominator and
the sum of the numerator and denominator is 337.

3 THE SECOND METHOD OF ANALYTICAL SOLUTION

Let us consider three convergent geometric series T1,2, T1,3 and T1,337 with the ratios 2−1 =
1
2

,

3−1 =
1
3

and 337−1 =
1

337
and unlike the previous paragraph with the first term 1, so the

geometric series of the form

T1,2 = 1+
1
2
+

1
22 +

1
23 +

1
24 + · · · , (16)

T1,3 = 1+
1
3
+

1
32 +

1
33 +

1
34 + · · · , (17)

T1,337 = 1+
1

337
+

1
3372 +

1
3373 +

1
3374 + · · · , (18)

with the sums S1,2, S1,3 and S1,337, which have according to formula (8) the values

S1,2 =
1

1−1/2
=

2
2−1

= 2 , (19)
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S1,3 =
1

1−1/3
=

3
3−1

=
3
2
, (20)

S1,337 =
1

1−1/337
=

337
337−1

=
337
336

. (21)

Because the series (16) – (18) are absolutely convergent, their product

T1,2 ·T1,3 ·T1,337 =
(

1+
1
2
+

1
22 +

1
23 +

1
24 + · · ·

)
·

·
(

1+
1
3
+

1
32 +

1
33 +

1
34 + · · ·

)
·

·
(

1+
1

337
+

1
3372 +

1
3373 +

1
3374 + · · ·

)
is again an absolutely convergent series. It is obvious that by multiplying the terms of these
three series we obtain a series of the form

T1,2 ·T1,3 ·T1,337 = 1+
1
2
+

1
3
+

1
337

+
1
22 +

1
32 +

1
3372 +

1
2 ·3

+
1

2 ·337
+

1
3 ·337

+

+
1
23 +

1
33 +

1
3373 +

1
22 ·5

+
1

22 ·337
+

1
32 ·2

+
1

32 ·337
+

+
1

3372 ·2
+

1
3372 ·3

+
1

2 ·3 ·337
+

1
24 +

1
34 +

1
3374 + · · · ,

that is, the series 1+T with the sum 1+S. From the equation

1+S = S1,2 ·S1,3 ·S1,337

we get
S = S1,2 ·S1,3 ·S1,337−1 .

According to (19) – (21) we have

S = 2 · 3
2
· 337

336
−1 ,

so
S =

337
112
−1 =

225
112

= 2.00892859714 . (22)

We thus obtained the same result with both methods of calculation.

It is obvious that the second method of calculation with notation of the given series in the
form of a product of partially convergent geometric series is significantly simpler and for more
than two prime factors generating these series also significantly clearer. Therefore, we can now
generalize the result obtained by the second calculation method for any three and for arbitrary
n generating positive integers different from one.

Theorem 1 The sum S(a1,a2, . . . ,an) of the series of reciprocals of all products generated by
n different positive integers a1,a2, . . . ,an, greater than 1, is given by the formula

S(a1,a2, . . . ,an) =
n

∏
k=1

1
1−1/ak

−1 ,

i.e. by the formula

S(a1,a2, . . . ,an) =
n

∏
k=1

ak

ak−1
−1 . (23)
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4 NUMERICAL SOLUTION

Now, we will solve the task to determine the sum S of reciprocals of all products generated by
all prime divisors 2,3,337 of the number 2022 numerically by using the basic programming
language in the computer algebra system Maple 2022. We use the following simple procedure
part2022:

part2022:= proc(p)

local d,e,i,j,k,n,s,sa;

s:= 0;

sa:=2.00892857142857142857;

for n from 1 to p do

for i from 0 to n do

for j from 0 to n-i do

for k from 0 to n-i-j do

if i+j+k = n-1 then

d:=2 ˆi*3 ˆj*337 ˆk;
s:= s+1/d;

end if;

end do;

end do;

end do;

end do;

e:=abs(s-sa)/s;

print("sum for the most power",p,"is",evalf[21](s),

"relative error is",evalf[21](e));

end proc:

This procedure generates and sums first p numbers of 3-combinations with repetitions, i.e.

c =
p

∑
m=1

(
3+m−1

m

)
=

p

∑
m=1

(
m+2

m

)
=

(
3
1

)
+

(
4
2

)
+

(
5
3

)
+ · · ·+

(
p+2

p

)
unit fractions that have denominators with only factors from the set {2,3,337}, i.e. with de-
nominators of the form 2i ·3 j ·337k, up to the sum p = i+ j+ k of their exponents.

Next, we will use the following basic formulas from combinatorics:(
n
k

)
+

(
n

k+1

)
=

(
n+1
k+1

)
and

(
n
k

)
=

(
n

n− k

)
.

By adding the binomial coefficient
(

3
0

)
(= 1) and subsequently subtracting 1 we can easily

show that

c =
(

p+3
p

)
−1 =

(
p+3

3

)
−1 =

(p+3)(p+2)(p+1)
6

−1 .

The result of the procedure part2022 is the sum S, which for p≥ 70 (the total exponent p = 70
corresponds to c = 62195 unit fractions) gives the value

S = 2.00892859714 , (24)
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likewise by using both analytical solutions above.
The approximate values of the sums S = S(p) for p = 5,10, . . . ,70,75, rounded to 20 deci-

mals and obtained by one for statement
for p from 5 by 5 to 75 do part2022(p); end do;

are written into the following table:

p S(p) η(p)
5 1.91877105938429808100 4.699 ·10−2

10 2.00599848045630520940 1.461 ·10−3

15 2.00883654242840052619 4.581 ·10−5

20 2.00892569361426140646 1.432 ·10−6

25 2.00892848148902216350 4.480 ·10−8

30 2.00892856861792820096 9.956 ·10−10

35 2.00892857134073869473 0
40 2.00892857142582665509 0
45 2.00892857142848565440 0
50 2.00892857142856874813 0
55 2.00892857142857134481 0
60 2.00892857142857142595 0
65 2.00892857142857142849 0
70 2.00892857142857142857 0
75 2.00892857142857142857 0

Tab. 1. The approximate values of the sums S(p) and their relative errors η(p)
Source: own modelling in Maple 2022

Note that the calculation of these 15 values of the sums S(p) took less than 4 seconds.

CONCLUSION

In this paper the sum S of all the unit fractions that have denominators with only factors from
the set {2,3,337} was determined by two analytical methods and subsequently numerically
verified. By these three calculation methods we obtain the same result

S =
225
112

= 2.00892859714 .

It can be said that the infinite series we have dealt with, i.e. the series the convergent reduced
harmonic series generated by three primes 2,3,337

1
2
+

1
3
+

1
337

+
1
22 +

1
32 +

1
3372 +

1
2 ·3

+
1

2 ·337
+

1
3 ·337

+
1
23 +

1
33 +

1
3373 + · · · ,

belongs to special types of convergent infinite series, such as geometric and telescoping series,
which sum can be found analytically by means of a finite formula.

At the end of the paper, we generalized the obtained result and determined the simple formula
for the sum of these series with n generating positive integers different from 1.
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Michal Šmerek, Milan Vágner
Department of Quantitative Methods, Faculty of Military Leadership, University of Defence

Kounicova 65, 662 10 Brno, Czech Republic
E-mail: michal.smerek@unob.cz, milan.vagner@unob.cz
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Abstract: In multi-criteria variant evaluation tasks, the order of the variants is determined
from best to worst, considering all criteria. The article describes two common methods of solv-
ing such problems, namely the graphical method and the weighted sum method. The authors
notice the negatives of the graphical method and propose its modifications that eliminate these
negatives. It involves the introduction of a weighted graphical method and also the elimination
of the problem of non-invariance of the order of variants for changing the order of criteria.

Keywords: multi-criteria evaluation of variants, graphical method, weighted graphical method,
non-invariance of the graphical method, changing the order of criteria, weighted sum method.

INTRODUCTION

In the article, the authors describe an area of operational research called multi-criteria evalua-
tion of variants (MCEV). The subject Operational research is a part of the study program at the
Faculty of Military Leadership of the University of Defense (FVL UO) in Brno. Its teaching is
provided by the Department of Quantitative Methods. As part of the course, students learn to
solve problems of an economic nature, which are also closely related to military issues. These
are mainly linear programming problems, transport problems, matrix games and precisely prob-
lems of multi-criteria evaluation of variants; see [8].

In its first chapter, the article presents the basic methods of solving MCEV tasks as they are
commonly taught at universities. The second chapter summarizes the advantages and disadvan-
tages of the graphical method and the weighted sum method. It turns out that the negatives of
the graphical method are so serious that they can even be called disqualifying for the correct use
of this method. Furthermore, in this chapter, the authors present proposals for modifications of
the graphical method, which remove these negatives.

The issue of multi-criteria evaluation of variants is a commonly used method, there are a large
number of articles describing the use of MCEV. For example the contribution [4] provides
an overview of MCEV methods as well as methods for determining criteria weights. The [9]
contribution also deals with the sensitivity analysis of the evaluation of the variants according
to the criteria weights. The article [7] examines the methods of evaluation of tenders in public
contracts, applies MCEV methods in the selection of the most suitable tender. The [6] paper
shows how decision theory combined with operational research techniques could be applied
in practice to solve complex water management and planning problems to reduce water loss.
The application of the MCEV method in 3D printing to support the protection of personnel
during the Covid pandemic is part of the article [3]. Many articles dealing with the MCEV
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issue contain the use of Saaty’s method for determining the weights of the criteria as well as
the application of fuzzy issues. An example of such an article is [2].

There are more ways to apply the graphical method when solving the problem of multi-criteria
evaluation of variants. A purely numerical form of the graphical method can be used, as well
as a graphical form of this method. It displays graphically the individual variants and their
evaluation according to individual criteria. There are more ways of such visualizations, they are
clearly summarized in the article [5].

We did not find a publication that mentioned the negatives of the graphical method. Similarly,
we did not find the procedures mentioned in this article, i.e. taking into account the weights
of the criteria in the graphical method (weighted graphical method) or eliminating the problem
of non-invariance of the graphical method. In the book [1] on p. 29–30, the authors list seven
properties that a method leading to finding compromise solutions should fulfill. The third prop-
erty “Invariance with respect to permutations of the criteria” is a key property that – as will be
shown later in the article – the classical graphical method does not fulfill.

1 MULTI-CRITERIA EVALUATION OF VARIANTS

This chapter serves to introduce the reader to the issue of multi-criteria evaluation of variants
(MCEV). An introduction to the MCEV will be presented here, i.e. the role of multi-criteria
evaluation of variants is introduced and the procedure common to both methods is described.
Both commonly used methods, i.e. the graphical method and the weighted sum method, are
then described in the following subsections. The key part is chapter 2. In it, the authors present
the advantages and disadvantages of both methods of solving MCEV problems, and propose
such modifications of the graphical method, which then eliminate the negatives of the graphical
method.

1.1 Introduction to multi-criteria evaluation of variants

We consider the task specified as follows:
We have p variants X1,X2, ...,Xp that are evaluated according to k criteria A1,A2, ...,Ak. These
evaluations form the so-called criterion matrix

Y = (yi j), (1)

where the element yi j indicates the evaluation of the variant Xi according to the criterion A j,
i = 1,2, ..., p, j = 1,2, ...,k. The goal is to find the order of all variants (from best to worst)
taking into account all criteria.

There are two methods commonly used in solving the MCEV problem – the graphical method
and the weighted sum method. Both of them are based on the so-called normalized criterion
matrix R = (ri j). First, we describe how we obtain the matrix R.

The criteria are of maximization or minimization type. The minimization criteria are converted
to maximization by expressing the savings against the worst variant, i.e.

y′i j = max
i
(yi j)− yi j, i = 1,2, ..., p, j = 1,2, ...,k. (2)
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In the criterion matrix Y ′ = (y′i j) there are already all criteria of the maximization type –
the higher the value in the given column, the better the variant according to the given crite-
rion. However, the values in different columns are still in different units (price in CZK, display
resolution in MPx, weight in grams, etc.), and therefore cannot be compared with each other.
Therefore, the so-called normalized criterion matrix R is introduced, the elements of which are

ri j =
y′i j−d j

h j−d j
, i = 1,2, ..., p, j = 1,2, ...,k, where (3)

d j = min
i
(y′i j) and h j = max

i
(y′i j).

The matrix R = (ri j) has all elements unitless numbers from the interval 〈0,1〉. Now the values
from different columns (evaluation according to different criteria) are comparable to each other.

In the next section, we will describe two methods to determine the order of the variants. It is
necessary, taking into account all the criteria, to obtain some single quantitative characteristic
(for each variant), on the basis of which we can easily determine this ranking.

1.2 Graphical method

A star coordinate system with semi-axes A1,A2, ...,Ak is introduced. Two adjacent semi-axes
are at an angle α = 2π

k = 360◦
k . For each variant Xi, we will plot the corresponding values ri j,

i = 1,2, ..., p, j = 1,2, ...,k on individual semi-axes A j. We connect every two adjacent values
(on adjacent semi-axes) with a line segment. In the graph, each variant Xi is displayed as a cor-
responding polygon – generally a k-angle. The more content a given polygon has, the better
the respective variant is.

The given polygon Xi, i.e. the respective k-angle, can be divided into k triangles, where we
always know one angle (angle α) and the lengths of the two sides that enclose this angle. If we
denote these sides b,c, then the content of the triangle is given by the relation

S4 =
1
2

bcsinα.

Then the content S of the polygon Xi is

S(Xi) =
1
2

sinα(ri1ri2 + ri2ri3 + ...+ ri,k−1rik + rikri1).

Since the value of sinα is the same for all variants, the order of the variants can also be obtained
by simply comparing the expressions in brackets, i.e. the sums

S′(Xi) = ri1ri2 + ri2ri3 + ...+ ri,k−1rik + rikri1. (4)

The larger the value of the function S′(Xi), the better the variant Xi is.

1.3 Weighted sum method

As the name of the method suggests, this method is based on determining the weighted sum
of ri j values from the criterion matrix, i.e. standardized evaluations of the variant according
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to the criteria. The weights express the importance of the criteria. The relative importance of
individual criteria can be expressed by means of a vector of criteria weights

~v = (v1,v2, ...,vk), where v j ≥ 0,
k

∑
j=1

v j = 1. (5)

Thus, the weighted sum method uses knowledge of criteria weights. For each variant Xi, the sum
of the products of the evaluation ri j and the respective weight v j is calculated, i.e. the value of
the function is

V S(Xi) =
k

∑
j=1

v jri j −→max . (6)

The larger this value is, the better the variant Xi is. The order of variants (from best to worst) is
then given by this function.

Note: Due to the fact that the sum of the weights is equal to 1, it is clear that the weighted sum
is also a weighted average here.

2 DISADVANTAGES OF THE GRAPHICAL METHOD AND THEIR ELIMINATION

2.1 Methods – advantages and disadvantages

In this chapter, we present a list of the advantages and disadvantages of the graphical method
and the weighted sum method in the area of multi-criteria evaluation of variants, see table 1.
In doing so, we assess the methods as described in the previous section, i.e. as they are com-
monly defined.

Method Advantages Disadvantages
Graphical
method

- color graph, impressive in presen-
tations and annual reports, ...

- all criteria are equally important, re-
spectively the importance of criteria is not
considered;
- the results are not invariant, see further.

Weighted
sum
method

- the importance of the criteria is
taken into account using the criteria’s
weights;
- the results are invariant, see further.

- unattractive look, just “a stark table with
many numbers” (contrast with a color
graph)

Tab. 1. Advantages and disadvantages of both methods

The authors are aware that this may not be a complete list of the positives and negatives of these
methods. Above all, however, the table clearly shows the areas on which the article focuses.
These are the disadvantages (negatives) of the graphical method, as well as suggestions for
modifications to the graphical method that eliminate these negatives.

2.2 Weighted graphical method

This is a modification of the graphical method with consideration of criteria weights. This mo-
dification therefore eliminates the first negative of the graphical method.
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We will consider the weights of the criteria as they are introduced in subsection 1.3, see the for-
mula (5). Instead of the normalized criterion matrix R = (ri j) we will use the matrix R′ = (r′i j),
where

r′i j = v jri j, i = 1,2, ..., p, j = 1,2, ...,k. (7)

We get the order of the variants using the function

S′v(Xi) = r′i1r′i2 + r′i2r′i3 + ...+ r′i,k−1r′ik + r′ikr′i1. (8)

The higher the value of S′v(Xi), the better the variant Xi is. It is obvious that the different
importance of the criteria is already taken into account here. However, as we will see in the next
subsection, there is a much more serious problem with the graphical method.

2.3 The problem of invariance of the graphical method

The problem we are going to describe now is a very fundamental problem. On the following
example and its purely formal change (not factual), we will show this problem.

2.3.1 Example 1a

Let us consider the task of multi-criteria evaluation of variants given by the criterion matrix

Y =


1 1 0 0

0,7 0,7 0,2 0,2
0 0,5 0,5 1

0,7 0,2 0,7 0,2
1 0 1 0

 . (9)

We will solve this task using a graphical method. It is obvious that the matrix Y is already a
normalized criterion matrix, i.e. R=Y . There are four criteria in the task, therefore there will be
four semi-axes, each of the two adjacent ones making an angle α = π

2 = 90◦. Since sinα = 1,
then S(Xi) =

1
2S′(Xi).

Table 2 summarizes the calculated values of the function S′(Xi) for individual variants Xi,
i = 1,2, ..., p. The table also shows the order of individual variants, determined according to
the value of S′(Xi), see the formula (4).

Variant Xi S′(Xi) = ri1ri2 + ri2ri3 + ri,3ri4 + ri4ri1 Order
X1 1 ·1+1 ·0+0 ·0+0 ·1 = 1 1.
X2 0,7 ·0,7+0,7 ·0,2+0,2 ·0,2+0,2 ·0,7 = 0,81 2.
X3 0 ·0,5+0,5 ·0,5+0,5 ·1+1 ·0 = 0,75 3.
X4 0,7 ·0,2+0,2 ·0,7+0,7 ·0,2+0,2 ·0,7 = 0,56 4.
X5 1 ·0+0 ·1+1 ·0+0 ·1 = 0 5.

Tab. 2. Calculation of the values of S′(Xi) for the variants Xi, i = 1,2, ..., p, and the order of
the variants, Ex. 1a

Graphically, the corresponding polygons are shown in color (red, blue, violet, green and yellow)
in the figure 1.
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Fig. 1. Graphs of polygons from Ex. 1a (in color) and 1b (in black)
Source: own

2.3.2 Example 1b

Let us consider exactly the same example as Ex. 1a, we just switch the order of the second and
third criteria. We will again determine the order of the variants using the graphical method.

It is clear that in the normalized criterion matrix the second and third columns are swapped with
respect to the matrix (9). Thus, the normalized criterion matrix now has the form

R =


1 0 1 0

0,7 0,2 0,7 0,2
0 0,5 0,5 1

0,7 0,7 0,2 0,2
1 1 0 0

 . (10)

Table 3 recalculates the values of the function S′(Xi) for the individual variants Xi, i = 1,2, ..., p,
and lists the order of the individual variants – according to the value of S′(Xi).

Variant Xi S′(Xi) = ri1ri2 + ri2ri3 + ri,3ri4 + ri4ri1 Order
X1 1 ·0+0 ·1+1 ·0+0 ·1 = 0 5.
X2 0,7 ·0,2+0,2 ·0,7+0,7 ·0,2+0,2 ·0,7 = 0,56 4.
X3 0 ·0,5+0,5 ·0,5+0,5 ·1+1 ·0 = 0,75 3.
X4 0,7 ·0,7+0,7 ·0,2+0,2 ·0,2+0,2 ·0,7 = 0,81 2.
X5 1 ·1+1 ·0+0 ·0+0 ·1 = 1 1.

Tab. 3. Calculation of the values of S′(Xi) for the variants Xi, i = 1,2, ..., p, and the order of
the variants, Ex. 1b
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If we compare table 2 with table 3, we see that the order of variants is now completely reversed
from the order in Ex. 1a.

The respective polygons are graphically represented by black labels in the figure 1.

2.3.3 Conclusion from examples – non-invariance

The conclusion that we can make, which is a direct consequence of the results of Examples 1a
and 1b, is a serious one. It turns out that the order of variants (from best to worst) obtained
when solving the MCEV problem by the graphical method depends on the order of the criteria.
Therefore, the findings can be formulated as follows:

The order of the variants (in the task of multi-criteria evaluation of variants) obtained by
the graphical method is not invariant to a change in the order of criteria!

At the same time, this is purely a formal (administrative) change in the order of the criteria, it
does not change the task itself in any way. It is clear that such a finding means a big problem
for the method as such and makes the use of the graphical method very problematic.

The exception, when the graphical method works correctly (unequivocally, it is invariant), is
the problem of multi-criteria evaluation of variants with only two or three criteria – in this case,
the order of the variants is invariant to the order of the criteria.
The proof is obvious. The contents of S(Xi) and also the value of S′(Xi) of the polygon do not
change. E.g. for three criteria, when the order of the criteria is changed, the polygons (triangles)
corresponding to the variants only change in the mirror image.

At this point it is good to point out that the weighted sum method does not have such a prob-
lem, in all cases the order of variants determined by the weighted sum method is invariant to
changing the order of the criteria.

2.3.4 Invariant modification of the graphical method

Let us consider all permutations of the criteria A1,A2, ...,Ak. Denote the set of all these permuta-
tions by P(k). Then for each permutation P we can calculate the content of SP(Xi), or the value
of the function S′P(Xi) (acording to the formula (4)). We determine the order of variants using
the average M(Xi) of these values S′P(Xi) over all permutations P(k),

M(Xi) =

∑
P∈P(k)

S′P(Xi)

k!
=

2
k−1

k−1

∑
j=1

k

∑
m=2
j<m

ri jrim.

It is obvious that the constant 2
k−1 has no effect on determining the order of variants from

best to worst, and the corresponding order of variants can only be determined by comparing
the function values

M′(Xi) =
k−1

∑
j=1

k

∑
m=2
j<m

ri jrim. (11)
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2.3.5 Modification of the graphical method that removes both disadvantages

It is possible to eliminate both disadvantages of the classically defined graphical method, see
table 1, simultaneously. So it is enough to combine the procedures described in the sections 2.2
and 2.3.4.

The function

M′′(Xi) =
k−1

∑
j=1

k

∑
m=2
j<m

r′i jr
′
im, (12)

can be used to determine the order of the variants from best to worst considering all criteria.
The values of r′i j are defined in the formula (7). After calculating the values of M′′(Xi) for all
considered variants and arranging them from the highest value to the smallest, we obtain the
order of the variants from best to worst. In doing so, the importance of the criteria (given by the
weights of the criteria) is taken into account, and the invariance of the order of the variants with
respect to the order of the criteria is also guaranteed.

2.3.6 Example 1a solved by the invariant graphical method

It is proposed to solve the test example 1a from the section 2.3.1 by the modified graphical
method just presented. We solve the MCEV problem with a criterion matrix (9). As criteria
weights are not considered in the example, we use the formula (11), see table 4. The obtained
order of variants is different from the order obtained both in example 1a (see table 2) and from
the order obtained in example 1b (see table 3). This could be expected, as well as the location of
variants X1 and X5, respectively variants X2 and X4 at the same position in the order of variants.

Variant Xi M′(Xi) = ri1ri2 + ri1ri3 + ri1ri4 + ri2ri3 + ri2ri4 + ri3ri4 Order
X1 1 ·1+1 ·0+1 ·0+1 ·0+1 ·0+0 ·0 = 1 4.–5.
X2 0,7 ·0,7+0,7 ·0,2+0,7 ·0,2+0,7 ·0,2+0,7 ·0,2+0,2 ·0,2 = 1,09 2.–3.
X3 0 ·0,5+0 ·0,5+0 ·1+0,5 ·0,5+0,5 ·1+0,5 ·1 = 1,25 1.
X4 0,7 ·0,2+0,7 ·0,7+0,7 ·0,2+0,2 ·0,7+0,2 ·0,2+0,7 ·0,2 = 1,09 2.–3.
X5 1 ·0+1 ·1+1 ·0+0 ·1+0 ·0+1 ·0 = 1 4.–5.

Tab. 4. Calculation of the values of M′(Xi) for variants Xi, i = 1,2, ..., p, and the order of
the variants determined by the invariant graphical method

If we were to solve the MCEV task considering the weights of the criteria, we would determine
the order of the variants based on the values of the function M′′(Xi), see the formula (12).

CONCLUSION

The article deals with the issue of multi-criteria evaluation of variants (MCEV) with special
regard to the graphical method. The authors described the negatives of the commonly used
procedure of this method and presented modifications of the graphical method that eliminate
both of these disadvantages. Normally, the graphical method does not work with criteria scales.
Usually, the graphical method does not take into account the different importance of individual
criteria, it works with the criteria as if they all have the same importance. In subsection 2.2,
the authors proposed a modification of the graphical method that takes the weights of the crite-
ria into account.
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Using an example, the authors showed that the common graphical method for solving the MCEV
problem provides a solution (order of variants from best to worst) that is not invariant to chang-
ing the order of criteria. In section 2.3.4, the authors present a procedure, a modification of
the graphical method that solves this problem. In section 2.3.5, the combination of both of
these new modifications into a single procedure, which solves both of the current shortcomings
of the common graphical method, is then presented. In the 2.3.6 section, the proposed new
method was applied to a concrete example.

The authors believe that the mentioned modifications of the graphical method make this work
unique in comparison to other works dealing with the issue of multi-criteria evaluation of vari-
ants. To find out the relevance of such a statement, the authors conducted a relatively detailed
research, the most interesting findings of which are commented in the introduction of the article.
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[4] Klicnarová, J. Vı́cekriteriálnı́ hodnocenı́ variant – metody [Multi-criteria evaluation of
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Abstract: In this article, we discuss the motivation for including an operating system kernel 
development course in the master curriculum of the Faculty of Informatics at Czech Technical 
University (CTU) at Prague. We provide arguments for having this course included in the 
master's curriculum. We present selected options for the content of the course lectures and 
labs and options for technical infrastructure. Experience from delivering the mentioned 
course is shared.   
Keywords: operating system, operating system kernel, embedded systems, real-time systems, 
device drivers, LINUX. 

 
INTRODUCTION – WHY/WHEN SHOULD OPERATING SYSTEM KERNEL 
DEVELOPMENT BE PART OF THE CURRICULUM? 
 

Understanding the functionality and implementation of operating systems is essential 
knowledge for any IT engineer. Although recent trends in demand for engineering education 
show a significant focus on the development of WEB and mobile applications, without 
understanding the functionality of operating systems it is not possible to complete advanced 
IT tasks (deployment, troubleshooting, performance, and tuning, improving the security of IT 
solutions). 

 The current portfolio of operating system courses at the Faculty of Informatics of 
Czech Technical University (CTU) is focused on the functionality and administration of 
operating systems. UNIX/LINUX is used for practical labs, mainly because of free-of-charge 
availability, portability, good documentation, and mainly because of widespread usage. 

The industrial demand (especially around embedded and real-time systems), interest 
from students, and the meaning of experts resulted in the requirement for the development of 
a course covering the development of operating system kernels. We have naturally chosen 
LINUX as a system used for demonstration of implementation techniques and practical labs. 
The main reasons are the source code's availability, the kernel's clear structure, and the fact 
that LINUX is an open system.  

 

1  OPERATING SYSTEMS CURRICULUM AT CTU 
 

1.1 Traditional Operating Systems Courses at CTU 
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The university curriculum at the faculty of informatics at CTU traditionally consists of 
three courses covering the area of operating systems: 

• Introduction to the UNIX Operating System - This course is obligatory for all 
approximately 1000 students in the first year of their studies at the Faculty of 
Informatics. The main objective of this course is to make students familiar (as soon as 
possible) with the technical infrastructure of IT solutions. LINUX is used for labs – 
students are made familiar with processes, files, text processing of configuration files, 
and SHELL scripting. 

• Operating Systems – classical course covering  
o architecture of operating systems (OS) and architecture of OS kernel 
o implementation of processes and threads 
o classical synchronization problems and their solution  
o virtual memory and implementation of memory management  
o technologies of storing data on fixed media (disks),  
o virtualization of disk space  
o monitoring, performance and tuning, and security of operating systems 

 
Laboratory exercises for this course are being delivered on LINUX, SOLARIS, and 
Windows. 
 

• UNIX and LINUX System Administration – The objective of this course is to make 
students familiar with the main areas of operating systems administration 

 

1.2 Operating Systems and System Programming course 
 

Growing demand from academia and industry resulted in the introduction of a new course 
– Operating Systems and System Programming. The objective of this course is to make 
students familiar with the knowledge and methods needed for the modification and 
development of operating system kernels. We have naturally chosen the LINUX kernel. 
Students will learn about the implementation of the LINUX kernel, and they complete lab 
exercises consisting of the creation of new kernel modules or modification of existing 
modules (subsystems).  

The main topics of this course are: 
 
• tools for debugging LINUX kernel and dynamic kernel modules 
• implementation of systems calls and interrupt handlers 
• kernel synchronization mechanisms 
• kernel support for symmetric multiprocessing 
• development of device drivers 
• address space of processes and memory management 
• implementation of file systems, Virtual File System (VFS) 
• kernel tuning and kernel portability 
• implementation of network services (implementation of sockets) 
• architecture (hardware) dependent kernel services, system booting, and startup 
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• implementation of virtualization support (e.g. KVM, cgroups) 
• specifics of LINUX kernel development for embedded systems and real-time systems 

 

The aim of this course is not to teach students how to develop a complete OS kernel. Such 
work is outside the standard knowledge of university students. The number of lines of LINUX 
kernel source code currently exceeds 35 million lines (See Fig. 1.).   

The second drawback is that such work needs to be distributed among several (groups of) 
students and putting together the work of these (groups of) students represents an enormous 
amount of work. We rather focus on giving students smaller (but realistic) tasks, like 
developing (part of) a kernel subsystem or modifying an existing kernel subsystem.  

 

 
Fig. 1. Number of lines of the LINUX kernel source code 

Source: https://en.wikipedia.org/wiki/Linux_kernel 
 
Besides standard OS kernel topics (processes, files, synchronization primitives, device 

drivers, network interfaces), we have put extra focus on kernel subsystems supporting 
virtualization (i.e., fundamentals for cloud computing) and on the development of kernels for 
embedded systems. The main reason is the growing demand for engineers to be familiar with 
the development of software for embedded systems. Significant demand is coming from the 
automotive and precise machinery industries.  

Recommended books for this course are [1], [2] and [3]. The main source of labs is the 
LINUX Kernel Teaching Project [7]. This project contains lab exercises of reasonable 
complexity (creating dynamically loadable kernel modules providing modifications of the 
functionality of kernel subsystems).  

 

2 LABORATORY INFRASTRUCTURE FOR LINUX KERNEL DEVELOPMENT 
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2.1 Virtualized Lab Development Environment 
 

The software development environment for LINUX Kernel development is quite complex. 
The main drawback is that when making changes in the developed kernel, we may introduce 
situations when the system will not be able to boot. This means that we cannot use a kernel of 
a “native host” system in the development process. We need to do the development in an 
emulated HW environment. Once the development of a kernel (module) is successful, we can 
replace the “native host” kernel with the developed kernel and boot the system.  

 To mitigate this situation, we need to use a stable HW emulator – e.g. QEMU [4]. 
QEMU is an emulator that runs on top of the host system (See Fig. 2.). Performance of 
QEMU can be improved using LINUX KVM (Kernel Virtual Machine, see also Fig. 2.). 
More details about KVM are available at [5]. We have not considered using XEN (or other 
hypervisors supporting paravirtualization). 

 
Fig. 2. Comparison of XEN, KVM and QEMU  

Source: https://www.researchgate.net/figure/Comparison-of-Xen-KVM-and-
QEMU_fig1_281177318 

 

During the kernel development process, we usually need to work with several 
instances of the development environment. The reason is that we usually need to develop 
multiple different instances of the LINUX kernel. We recommend virtualizing the host 
operating system using Oracle Virtual Box [6] of a similar hypervisor. This is a solution we 
have recommended to our students. 

Creating a described development environment is quite challenging. We have 
therefore prepared ready-made images that students can use instantly.  

 

2.2 LINUX Kernel Teaching Project   
 

 After details research, we have chosen lab exercises publicly available in the LINUX 
Kernel Teaching (LKT) project. The main arguments for this decision are: 

• the whole lab environment is available free of charge 
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• labs are to be used with the latest version of the LINUX kernel 
• the complexity of lab exercises is adequate – there are sets of labs with different 

complexity 
• ARM (embedded) hardware emulator is part of the LKT package 
• labs are available as a GitHub project (students can contribute to this project as well) 
• labs demonstrate all the most important kernel subsystems: 

o process and memory management 
o file systems (including VFS – Virtual File System) 
o device drivers, handling of interrupts 
o kernel synchronization primitives (also for symmetric multiprocessing) 
o networking 
o security 

• most exercises consist of modification of functionality of kernel subsystems (no need 
for developing a kernel module from scratch) 

Our experience with using the LINUX Kernel Teaching project for lab exercises is very 
positive. We have given students a basic set of exercises to be completed to receive credit for 
completing the course. Additional points (leading to better final evaluation) can be gained 
when completing extra exercises.  

Special SW development tools need to be used for debugging kernel modules. We lack a 
"high-level development environment" when working with the LINUX kernel. We mostly use 
debugging prints, kdb, gdb, and kgdb debuggers, and various tracing utilities (ftrace, 
strace, ltrace, dtrace).  

A good survey of LINUX kernel debugging tools is available at [8]. 

 

2.2 LINUX Kernel Teaching Project – Lab exercise example  
Let’s demonstrate briefly how kernel development works. Below is a very simple 

example of a kernel module. When loading into the kernel, the message "Hi" will be 
generated. When unloading the kernel module, the "Bye" message will be generated: 
#include <linux/kernel.h> 
#include <linux/init.h> 
#include <linux/module.h> 
 
MODULE_DESCRIPTION("My kernel module"); 
MODULE_AUTHOR("Me"); 
MODULE_LICENSE("GPL"); 
 
static int dummy_init(void) 
{ 
        pr_debug("Hi\n"); 
        return 0; 
} 
 
static void dummy_exit(void) 
{ 
        pr_debug("Bye\n"); 
} 
 
module_init(dummy_init); 
module_exit(dummy_exit); 
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A complete example of compiling and loading/unloading a kernel module is presented below: 
faust:~/lab-01/modul-lin# ls 
Kbuild  Makefile  modul.c 
faust:~/lab-01/modul-lin# make 
make -C /lib/modules/`uname -r`/build M=`pwd` 
make[1]: Entering directory `/usr/src/Linux-2.6.28.4' 
  LD      /root/lab-01/modul-lin/built-in.o 
  CC [M]  /root/lab-01/modul-lin/modul.o 
  Building modules, stage 2. 
  MODPOST 1 modules 
  CC      /root/lab-01/modul-lin/modul.mod.o 
  LD [M]  /root/lab-01/modul-lin/modul.ko 
make[1]: Leaving directory `/usr/src/linux-2.6.28.4' 
faust:~/lab-01/modul-lin# ls 
built-in.o  Kbuild  Makefile  modul.c  Module.markers 
modules.order  Module.symvers  modul.ko  modul.mod.c 
modul.mod.o  modul.o 
faust:~/lab-01/modul-lin# insmod modul.ko 
faust:~/lab-01/modul-lin# dmesg | tail -1 
Hi 
faust:~/lab-01/modul-lin# rmmod modul 
faust:~/lab-01/modul-lin# dmesg | tail -2 
Hi 
Bye 
faust:~/lab-01/modul-lin# 
 

We have used many complex examples in real lab work. Examples will be given 
during the presentation of this article – presentation of more complex examples is limited by 
the available space in this text.  
 
CONCLUSION 
 

We have delivered the course described in this article two times, each time for 30+ 
students. The feedback from students was very positive. Students very much appreciate 
realistic lab exercises with adequate complexity. 
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