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REMARKS ON Mp,g SUMMABILITY AND Ig
c -CONVERGENCE

OF SEQUENCES OF REAL NUMBERS

Vladimı́r Baláž, Alexander Maťašovský and Tomáš Visnyai
Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava

Radlinského 9, 812 37 Bratislava, Slovakia, vladimir.balaz@stuba.sk,
alexander.matasovsky@stuba.sk, tomas.visnyai@stuba.sk

Abstract: The aim of the article is to show a new type of summability of sequences of real numbers.
Its properties and connections with the Ig

c -convergence are shown, where Ig
c is a special type of

ideal that is generated by a real function g.

Keywords: sequences of real numbers, convergence, ideal, summability.

INTRODUCTION

We recall the basic definitions and notations that will be used throughout the paper. Let N be the
set of all positive integers, N0 = N∪ {0}, and R+ be the set of all positive real numbers. A system
I, ∅ ≠ I ⊆ 2N is called an ideal, provided that I is additive (A,B ∈ I implies A ∪ B ∈ I) and
hereditary (A ∈ I, B ⊂ A implies B ∈ I). The ideal is called nontrivial if I ̸= 2N. If I is a
nontrivial ideal, then I is called admissible if it contains the singletons ({n} ∈ I for every n ∈ N).
The fundamental notation which we shall use is I-convergence introduced in the paper [9] (see
also [3] where I-convergence is defined by means of the dual notion of an ideal so-called filter).
The notion I-convergence corresponds to the natural generalization of the notion of statistical
convergence (see [1], [2], [5], [6], [13]).

Definition 1. Let x = (xn) be a sequence of real (complex) numbers. We say that the sequence I-
converges to a number L, and write I − limxn = L, if for each ε > 0 the set
Aε = {n : |xn − L| ≥ ε} belongs to the ideal I.

In the following, we suppose that I is an admissible ideal. Then for every sequence (xn) we
immediately have that limn→∞ xn = L (classic limit) implies that (xn) also I-converges to the
same number L but the opposite is not true. In other words, for an admissible ideal I we have
Ifin ⊆ I, where Ifin is the ideal of all finite subsets of N and Ifin convergence coincides with the
usual convergence.
Let Id = {A ⊆ N : d(A) = 0}, where d(A) is the asymptotic density of A ⊆ N. The numbers
d(A) = lim infn→∞

#{a≤n : a∈A}
n

and d(A) = lim supn→∞
#{a≤n : a∈A}

n
are called the lower and

upper asymptotic density of the set A, respectively, where #M denotes the cardinality of the set
M . If d(A) = d(A) = d(A) then d(A) is said to be the asymptotic density of A. The usual Id-
convergence is called statistical convergence (see [5] and [13]). For 0 < q ≤ 1 the ideal I(q)

c ={
A ⊂ N :

∑
a∈A a−q < ∞

}
is an admissible ideal. The ideal I(1)

c =
{
A ⊂ N :

∑
a∈A

1
a
< ∞

}
is usually denote by Ic (see [2] and [8]).

1
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I-convergence satisfies usual axioms of convergence i.e. the uniqueness of limit, arithmetical
properties etc. The class of all I-convergent sequences is a linear space (see [9]). In [8] was proved
the necessary and sufficient condition for the equivalence between the I(q)

c -convergence and the
matrix method of summability however, a special class of regular matrices is needed (see [7]).

1 DEFINITIONS AND NOTIONS

Definition 2. Let g : R+ → R+ be a real function such that
∑∞

n=1
1

g(n)
= +∞. Then we can define

an ideal Ig
c =

{
A ⊂ N :

∑
n∈A

1
g(n)

< +∞
}

. The ideal Ig
c is an admissible ideal.

If g(n) = c, where c ∈ R then the ideal Ig
c contains only finite sets, hence Ig

c = Ifin. Next if
g(n) = n (we can write g(x) = x), then Ig

c = Ic and finally if we take g(x) = xq, q ∈ (0, 1⟩ then
the ideal Ig

c = I(q)
c .

Let us denote s the set of all sequences of real numbers and let s1 ⊂ s. The map T : s1 → s is
called a linear transformation if for all x, y ∈ s1 and a ∈ R such that x + y ∈ s1 and ax ∈ s1 we
have that the map T satisfies the following two conditions:

(i) T (x+ y) = Tx+ Ty (additivity),

(ii) T (ax) = a.Tx (homogeneity),

where Tx is also a sequence of real numbers.

The linear transformation T is regular if its convergence field
F(T ) = {x = (xn) : T − limxn ∈ R} contains all convergent sequences and, moreover, the T -
limit of a convergent sequence and its limit (in the usual sense) are the same, i.e. T − limxn =
limn→∞ xn ∈ R (see [4] and [11]).

Recall the axioms of convergence (see [10]).

(S) Every constant sequence (ξ, ξ, . . . , ξ, . . . ) converges to ξ.

(H) The limit of any convergent sequence is uniquely determined.

(F) If a sequence x = (xn) has the limit ξ, then each of its subsequence has the same limit.

(U) If each subsequence of the sequence x = (xn) has a subsequence which converges to ξ, then
x = (xn) converges to ξ.

It is well known that I-convergence satisfies all axioms except for axiom (F) (see [9]). In the next
part, we will focus on a certain summable method which can be defined as follows.

Definition 3. Let p > 0 and g : R+ → R+. We say that the sequence x = (xk) ∈ ℓ∞ is Mp,g-
summable to the real number L (and write Mp,g − limxk = L) if

K =
∞∑
k=1

|xk − L|p

g(k)
< +∞.

2
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There is a natural question, is the convergence field of the method Mp,g equal to the set of all
bounded sequences? The next example shows that all bounded real sequences are not Mp,g-
summable.

Example 4. Consider the function g(x) = xq where q ∈ (0, 1⟩ and p > 0. Define a sequence
x = (xk) as follows

xk =

{
1 if k is even,
0 if k is odd.

From the definition of Mp,g-summability follows that

K =
∞∑
k=1

|xk − L|p

kq
=

∞∑
n=1

|L|p

(2n)q
+

∞∑
n=1

|1− L|p

(2n− 1)q

= Lp

∞∑
n=1

1

(2n)q
+ |1− L|p

∞∑
n=1

1

(2n− 1)q

= +∞

because q ∈ (0, 1⟩. This means that the sequence x = (xk) of zeroes and ones is not Mp,g-
summable.

It is easy to show that the summable method Mp,g for p > 0 and a real function g : R+ → R+ such
that

∑
n∈N

1
g(n)

= +∞ is a linear transformation. We will show that Mp,g summability of sequences
implies Ig

c -convergence to the same real number.

Theorem 5. Let p > 0 and g : R+ → R+ such that
∑∞

n=1
1

g(n)
= +∞. If the sequence x = (xk) is

Mp,g-summable to L ∈ R, then Ig
c − limxk = L.

Proof. Let ε > 0 and g : R+ → R+ be a positive real function. Denote
A(ε) = {k ∈ N : |xk − L| ≥ ε}. Then we have

K =
∞∑
k=1

|xk − L|p

g(k)
≥ εp

∑
k∈A(ε)

1

g(k)
.

From this we get the inequality ∑
k∈A(ε)

1

g(k)
≤ K

εp
< +∞,

which means that A(ε) ∈ Ig
c , hence Ig

c − limxk = L.

Moreover, we can ask whether the opposite of the previous theorem is true? Again, we give a
negative answer.

Example 6. Let p > 0 and g(x) = xq, q ∈ (0, 1⟩. Define a sequence x = (xk) as follows

x = (xk) =

(
1

(log(k + 1))
1
p

)
, k = 1, 2, . . . .

3
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It is clear that limk→∞ xk = 0. Therefore Ig
c − limxk = 0. Calculate

K =
∞∑
k=1

|xk − 0|p

kq
=

∞∑
k=1

(
1

(log(k+1))
1
p

)p

kq
≥

∞∑
k=1

1

k log(k + 1)
= +∞

for q ∈ (0, 1⟩, therefore Mp,g − limxk ̸= 0.

This example shows much more. It is easy to show that the sequence x = (xn) is not Mp,g-
summable to any real number L.

The previous example also showed that the Mp,g-summability is not a regular method i.e. it does
not preserve a classical limit. So, we have the method of summability, which is not regular, but
implies Ig

c -convergence of sequences of real numbers to the same limit.

In the end, we give a result on how Mp,g-summability is related to the axioms of convergence.

Theorem 7. Let p > 0, g : R+ → R+ be a positive function such that
∑∞

n=1
1

g(n)
= +∞. Then

(i) Mp,g-summability has the properties (S) and (H),

(ii) Mp,g-summability does not have the properties (F) and (U).

Proof. (i) It is clear that the axiom (S) holds. Let g(x) = xq. Suppose that Mp,g − limxk = ξ

and simultaneously Mp,g − limxk = µ where ξ ̸= µ. Choose ε ∈
(
0, |ξ−µ|

2

)
and denote A(ε) =

{k ∈ N : |xk − ξ| ≥ ε} and B(ε) = {k ∈ N : |xk − µ| ≥ ε}. Then d
(
A(ε)

)
> 0 or d

(
B(ε)

)
> 0,

where d is the upper asymptotic density. Let d
(
A(ε)

)
> 0, then on the basis of article [12] we have∑

k∈A(ε)

1
k
= +∞. Next

K =
∞∑
k=1

|xk − ξ|p

kq
≥ εp

∑
k∈A(ε)

1

kq
≥ εp

∑
k∈A(ε)

1

k
= +∞.

This is in contradiction with the assumption of Mp,g-convergence of the sequence x = (xk).

(ii) We show that the Mp,g-summability does not satisfy the axiom (F). Let A = {n! : n ∈ N} and
g(x) = xq, q ∈ (0, 1⟩. Define a sequence x = (xk) as it follows:

xk =

{
1 if k ∈ A,

0 if k ∈ N \ A.

Then
∞∑
k=1

|xk − 0|p

kq
=
∑
k∈A

1

kq
=

∞∑
n=1

1

(n!)q
< +∞.

So the sequence x = (xk) is Mp,g-summable to zero. But the sequence y = (yn), where yn = xk,
k = n! is a constant sequence yn = 1, n = 1, 2, . . . , hence Mp,g − lim yn = 1.

4
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Now we are going to show that Mp,g-summability does not also satisfy the axiom (U). Take into
consideration Example 6. Let M = {k1 < k2 < · · · < kn < · · · } be an arbitrary subsequence of
N. Put yn = xkn , n = 1, 2, . . . . In this way, we get a subsequence of the sequence x = (xk). Since
limk→∞ xk = 0 we can choose from every subsequence of x another subsequence that has the same
limit. Take yn = xkn . For r = 1 there exists n1 ∈ N such that yn1 = xkn1

< 1 then z1 = yn1 .
For r = 2 there exists n2 ∈ N (n2 > n1) such that yn2 = xkn2

< 1
2

then z2 = yn2 etc., for r ∈ N
there exists nr ∈ N (nr > nr−1) such that ynr = xknr

< 1
2r−1 then zr = ynr . By this construction

we get the subsequence z = (zr), r = 1, 2, . . . . Simple calculation gives Mp,g-summability of the
sequence z to zero:

∞∑
r=1

|zr − 0|p

rq
=

∞∑
r=1

∣∣xknr
− 0
∣∣p

kq
nr

≤
∞∑
r=1

(
1

2r−1

)p
kq
nr

=
∞∑
r=1

1

2(r−1)pkq
nr

< +∞,

because p > 0 and q ∈ (0, 1⟩. Therefore Mp,g − lim zr = 0, and the sequence x = (xk) is not
Mp,g-summable (as it was shown in Example 6). We are finished the proof.

CONCLUSION

We showed, that for the ideal Ig
c , where g is a positive real function such that

∑∞
n=1

1
g(n)

= +∞,
from Mp,g-summability follows the Ig

c -convergence of bounded sequences of real numbers to the
same limit. We also showed some properties of Mp,g-summability e.g. axioms of convergence and
a description of the convergence field of the given method.
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BOUNDED SOLUTIONS OF A SYSTEM OF TWO DISCRETE EQUATIONS
WITH COMPLEX EIGENVALUES OF THE MATRIX OF LINEAR TERMS

Jaromı́r Baštinec, Josef Diblı́k, Zuzana Piskořová
Brno University of Technology,

FEEC, Technická 8, 616 00 Brno, Czech Republic
bastinec@vutbr.cz, diblik@vut.cz, 155597@vut.cz

Abstract: In the paper we consider a two-dimensional linear non-homogeneous system of discrete
equations

y1(k + 1) = py1(k) + qy2(k) + g1(k),

y2(k + 1) = −qy1(k) + py2(k) + g2(k),

where k = a, a+ 1, . . . with a fixed integer a ∈ N, p, q are real constants, gi : {a, a+ 1, . . . } → R,
i = 1, 2 are given functions. Sufficient conditions are derived guaranteeing the existence of a solu-
tion y(k) = (y1(k), y2(k)), k = a, a + 1, . . . satisfying y21(k) + y22(k) < M , where M is a given
positive constant.

Keywords: bounded solution, linear discrete system, retract principle, mapping.

1 INTRODUCTION

This paper is concerned with a system of linear non-homogeneous discrete equations

y1(k + 1) = py1(k) + qy2(k) + g1(k), (1)
y2(k + 1) = −qy1(k) + py2(k) + g2(k), (2)

where k ∈ N(a) := {a, a + 1, a + 2, . . . }, a ∈ N := {1, 2, . . . } is a fixed integer, p and q are real
constants, q 6= 0 and gi : N(a)→ R, are given functions. Let M be a positive constant. In the paper
we indicate sufficient conditions for the existence of at least one solution y(k) = (y1(k), y2(k)),
k ∈ N(a) satisfying the inequality

y21(k) + y22(k) < M, ∀k ∈ N(a). (3)

The existence of bounded (within the meaning of various definitions) solutions for scalar, planar
and n-dimensional linear and non-linear discrete systems has been considered, e.g., in [2, 3, 4, 5,
6, 8, 9, 10, 11, 12, 13, 16]. System (1), (2) is a particular case of a linear non-homoneneous system

y1(k + 1) = a11y1(k) + a12y2(k) + g1(k), (4)
y2(k + 1) = a21y1(k) + a22y2(k) + g2(k), (5)

where aij , i, j = 1, 2 are real numbers, k ∈ N(a). Set

A =

(
a11 a12
a21 a22

)
, g(k) =

(
g1(k)
g2(k)

)
, y(k) =

(
y1(k)
y2(k)

)
.

1
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Then, the system (4), (5) can be rewritten in a vector-matrix form

y(k + 1) = Ay(k) + g(k). (6)

Let us transform the system (6) by a change of variables y(k) = Sz(k), where z(k) is a new
dependent variable and the transformation matrix S is a 2 by 2 nonsingular matrix. Then, the
system (6) is transformed into a system

z(k + 1) = Jy(k) + f(k) (7)

where J = S−1AS and f(k) = S−1g(k). If S is properly chosen, then the matrix A can be
transformed into its Jordan form. For 2 by 2 matrices, Jordan forms J = Ji, i = 1, 2, 3, 4 are
possible where

J1 =

(
λ1 0
0 λ2

)
(8)

if the matrix A has two different real eigenvalues λ1, λ2,

J2 =

(
λ 0
0 λ

)
, J3 =

(
λ 1
0 λ

)
(9)

if the matrix A has one real eigenvalue λ with geometrical multiplicity equaling 2 or 1, and

J4 =

(
p q
−q p

)
(10)

if the matrix A has two complex conjugate eigenvalues λ = p± iq where i is the complex unit.
Although the above system (6) is solvable, to establish the existence of a bounded solution may

be a daunting task. We will demonstrate this on the example of a scalar equation

y(k + 1) = 3y(k) +
1

k + 1
− 3

k
(11)

having a bounded solution y(k) = 1/k. By the well-known formula for the general solution to
equation (11), we have

y(k) = 3k−ay(a) +
k−a∑
i=a

3k−a

(
1

k + 1
− 3

k

)
and it is not clear how this formula could be used to deduce the existence of a bounded solution.

Also, the above mentioned known results are either not applicable in principle or are not capable
of solving the problem for system (1), (2). Let us mention at least the recent paper [5] where so-
called triangular systems are considered. The results of this paper are applicable to systems (7)
with J = J1, J = J2 or J = J3 but not so if J = J4.

2

15



2 PRELIMINARIES

In the paper we will apply a result published in [10]. Below we give its short description. Consider
a system of nonlinear discrete equations

u(k + 1) = F (k, u(k)) (12)

where u = (u1, . . . , un), F : N (a) × Rn → Rn, and k ∈ N (a) is the independent variable.
Consider an initial problem

u(s) = us, (13)

where s ∈ N(a) and us ∈ Rn is fixed. A solution u = u(k), k ∈ N(s) of the initial problem (12),
(13) is defined as an infinite sequence

u(s) = us, u(s+ 1), u(s+ 2), . . .

such that, for any k ∈ N(s), equality (12) holds. The solution of initial problem (12), (13) exists
and is unique. Below we assume that the vector F (k, u) is continuous with respect to argument u.
Then, the initial problem (12), (13) depends continuously on the initial data.

Let a set Ω(k), k ∈ N(a), be an n-dimensional open bounded and simply connected subset of
the set

S(k) := {(k, u) : u ∈ Rn}.

Due to the above-formulated properties, every set Ω(k), k ∈ N(a) is topologically equivalent to an
n-dimensional open ball in Rn. The boundary ∂Ω(k) of Ω(k) is defined in the space S(k) in the
usual way, as well as the closure Ω(k) = Ω(k) ∪ ∂Ω(k).

Definition 2.1 Let a point M = (k, u0) ∈ S(k) with a fixed k ∈ N(a) be given. The point M c =
(k + 1, F (k, u0)) is called the first consequent point to the point M and denoted by M c = C[M ].

Definition 2.2 Let a set S ⊂ S(k) with a fixed k ∈ N(a) be given. We say that a set Sc is the first
consequent set to the set S if Sc := {M c,M ∈ S} and write Sc = C[S].

Define a mapping F : N(a)× Rn → N(a)× Rn by the formula F(k, u) = (k + 1, F (k, u)).

Theorem 2.3 Let, for every fixed s ∈ N(a), the mapping F : ∂Ω(s) → C[∂Ω(s)] be bijective.
Suppose that, for every fixed s ∈ N(a), the set C[∂Ω(s)] is the boundary of an n-dimensional
closed domain D(s+ 1), homeomorphic with n-dimensional closed ball such that

Ω(s+ 1) ⊂ D(s+ 1) and Ω(s+ 1) ∩ ∂D(s+ 1) = ∅. (14)

Then, there exists at least one initial point u∗(a) = ua∗ with (a, ua∗) ∈ Ω(a) such that the solution
u = u∗(k), k ∈ N(a) of system (12) satisfies

(k, u∗(k)) ∈ Ω(k) (15)

for every k ∈ N(a).

3
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3 BOUNDED SOLUTIONS TO SYSTEM (1), (2)

In this part we consider system (1), (2) and give sufficient conditions for the existence of at least
one bounded solution y(k) = (y1(k), y2(k))T , k ∈ N (a) such that

y21(k) + y22(k) < M, ∀k ∈ N (a) (16)

where M is a fixed positive number. We use the below notation

w(k) := y21(k) + y22(k)−M, k ∈ N (a), (17)

a(k) := qg1(k) + pg2(k), b(k) := pg1(k)− qg2(k), k ∈ N (a),

c := p2 + q2,

and

D(k) :=

(
a(k)

c
+
a3(k)

c

1

b2(k)
+M

a(k)c

b2(k)
−M a(k)

b2(k)

)2

− 2

((
a(k)

b(k)

)2

+ 1

)

·

(
1

4

(
b(k)

c

)2

+
1

4

(
a2(k)

b(k)c

)2

+

(
1

2
M

c

b(k)

)2

+

(
1

2

M

b(k)

)2

+
a2(k)

c2
+M − M

c
+M

a2(k)

b2(k)
− a2(k)

c

M

b2(k)
−M2 c

b2(k)
− 2M

)
.

Theorem 3.1 Let M > 0 be a fixed number and, for every k ∈ N (a), b(k) 6= 0, D(k) < 0,

(p2 + q2)M + g21(k) + g22(k) > 2
√
M(|a(k)|+ |b(k)|) +M, (18)

and
a2(k) + b2(k) < Mc. (19)

Then, the system (1), (2) has at least one solution y(k) = (y1(k), y2(k))T , k ∈ N (a) satisfying
inequality (16).

PROOF. The proof is divided into several parts below. Define, for every k ∈ N (a), a circle

S1(k) := {(k, y1, y2) : y1 ∈ R, y2 ∈ R, y21 + y22 = M}

as the boundary of a disc

D1(k) := {(k, y1, y2) : y1 ∈ R, y2 ∈ R, y21 + y22 ≤M}.

i) Mapping of the circle S1(k) by system (1), (2). To map the circle S1(k), let us imagine that the
points are initial generating the solutions to system (1), (2). In other words, we will discuss the
properties of solutions (y1(k), y2(k))T to system (1), (2) such that their starting points satisfy the
restriction w(k) = 0. For it, consider the value w(k + 1) and show that w(k + 1) > 0. By our
computation, we have

w(k + 1) =y21(k + 1) + y22(k + 1)−M

4
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= (py1(k) + qy2(k) + g1(k))2 + (−qy1(k) + py2(k) + g2(k))2 −M
=p2y21(k) + q2y22(k) + g21(k) + 2pqy1(k)y2(k) + 2py1(k)g1(k) + 2qy2(k)g1(k)

+ q2y21(k) + p2y22(k) + g22(k)− 2pqy1(k)y2(k)− 2qy1(k)g2(k) + 2py2(k)g2(k)−M
=p2y21(k) + q2y22(k) + g21(k) + 2py1(k)g1(k) + 2qy2(k)g1(k)

+ q2y21(k) + p2y22(k) + g22(k)− 2qy1(k)g2(k) + 2py2(k)g2(k)−M
=p2(y21(k) + y22(k)) + q2(y22(k) + y21(k)) + g21(k) + g22(k)

+ 2py1(k)g1(k) + 2qy2(k)g1(k)− 2qy1(k)g2(k) + 2py2(k)g2(k)−M
=(p2 + q2)(y12(k) + y22(k)) + g21(k) + g22(k) + 2y1(k)(pg1(k)− qg2(k))

+ 2y2(k)(qg1(k) + pg2(k))−M = (∗)

Because y21(k) + y22(k) = M , we have |y1(k)| ≤
√
M and |y2(k)| ≤

√
M . The inequality w(k +

1) > 0 will hold if

(∗) ≥ (p2 + q2)M + g21(k) + g22(k)− 2
√
M(|a(k)|+ |b(k)|)−M > 0.

The last inequality holds being equivalent with the assumption (18). The relation w(k + 1) = 0, as
it follows from the analysis of the expression (∗), represents a circle in the plane

P(k + 1) := {(k + 1, y1, y2) : y1 ∈ R, y2 ∈ R}.

Denote this circle by S2(k + 1). Below we find its canonical form, the centre and radius. Equation
w(k + 1) = 0 is equivalent with

y21(k)+y22(k)+
g21(k) + g22(k)

p2 + q2
+2y1(k)

pg1(k)− qg2(k)

p2 + q2
+2y2(k)

qg1(k) + pg2(k)

p2 + q2
− M

p2 + q2
= 0.

Modifying the left-hand side of this equality we derive

y21(k) + 2y1(k)
pg1(k)− qg2(k)

p2 + q2
+ y22(k) + 2y2(k)

qg1(k) + pg2(k)

p2 + q2
+
g21(k) + g22(k)

p2 + q2

− M

p2 + q2

=

(
y1(k) +

pg1(k)− qg2(k)

p2 + q2

)2

−
(
pg1(k)− qg2(k)

p2 + q2

)2

+

(
y2(k) +

qg1(k) + pg2(k)

p2 + q2

)2

−
(
qg1(k) + pg2(k)

p2 + q2

)2

+
g21(k) + g22(k)

p2 + q2
− M

p2 + q2

=

(
y1(k) +

pg1(k)− qg2(k)

p2 + q2

)2

+

(
y2(k) +

qg1(k) + pg2(k)

p2 + q2

)2

+
g21(k) + g22(k)

p2 + q2

−
(
pg1(k)− qg2(k)

p2 + q2

)2

−
(
qg1(k) + pg2(k)

p2 + q2

)2

− M

p2 + q2

=

(
y1(k) +

pg1(k)− qg2(k)

p2 + q2

)2

+

(
y2(k) +

qg1(k) + pg2(k)

p2 + q2

)2

+
g21(k) + g22(k)

p2 + q2

5
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−
(
p2g21(k)− 2pg1(k)qg2(k) + q2g22(k)

(p2 + q2)2

)
−
(
q2g21(k) + 2qg1(k)pg2(k)) + p2g22(k)

(p2 + q2)2

)
− M

p2 + q2

=

(
y1(k) +

pg1(k)− qg2(k)

p2 + q2

)2

+

(
y2(k) +

qg1(k) + pg2(k)

p2 + q2

)2

+
g21(k) + g22(k)

p2 + q2

− p2g21(k)− 2pg1(k)qg2(k) + q2g22(k) + q2g21(k) + 2qg1(k)pg2(k)) + p2g22(k)

(p2 + q2)2
− M

p2 + q2

=

(
y1(k) +

pg1(k)− qg2(k)

p2 + q2

)2

+

(
y2(k) +

qg1(k) + pg2(k)

p2 + q2

)2

+
g21(k) + g22(k)

p2 + q2

− (p2 + q2)(g21(k) + g22(k))

(p2 + q2)2
− M

p2 + q2
.

Therefore

w(k + 1) =

(
y1(k) +

pg1(k)− qg2(k)

p2 + q2

)2

+

(
y2(k) +

qg1(k) + pg2(k)

p2 + q2

)2

− M

p2 + q2

and the equation w(k + 1) = 0 defines the circle S2(k + 1),

S2(k + 1) :=

{
(k + 1, y1, y2) : y1 ∈ R, y2 ∈ R,

(
y1 +

pg1(k)− qg2(k)

p2 + q2

)2

+

(
y2 +

qg1(k) + pg2(k)

p2 + q2

)2

− M

p2 + q2
= 0

}
. (20)

The circle (20) has the centre C2(k + 1) at the point

C2(k + 1) =

(
k + 1,−pg1(k)− qg2(k)

p2 + q2
,−qg1(k) + pg2(k)

p2 + q2

)
and its radius r2 equals

r2 =

√
M

p2 + q2
.

Using the previously defined symbols a(k), b(k) and c we can abbreviate

w(k + 1) =

(
y1(k) +

b(k)

c

)2

+

(
y2(k) +

a(k)

c

)2

− M

c
,

with equation (20) of the circle S2(k + 1) being transformed into

S2(k + 1) =

{
(k + 1, y1, y2) : y1 ∈ R, y2 ∈ R,

(
y1 +

b(k)

c

)2

+

(
y2 +

a(k)

c

)2

− M

c
= 0

}
.
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and

C2(k + 1) =

(
k + 1,−b(k)

c
,−a(k)

c

)
, r2 =

√
M

c
.

ii) On a relationship of two circles. Consider in the plane P(k+1) a relationship between the circle
S2(k + 1) being the boundary of a disc

D2(k + 1) :=

{
(k + 1, y1, y2) : y1 ∈ R, y2 ∈ R,

(
y1 +

b(k)

c

)2

+

(
y2 +

a(k)

c

)2

− M

c
≤ 0

}

and the circle S1(k + 1). Let us search for the points of their intersection provided they exist.
Analyzing the equation

y21 + y22 −M =

(
y1 +

b(k)

c

)2

+

(
y2 +

a(k)

c

)2

− M

c
, k ∈ N(a+ 1),

we derive

y21 + y22 −M = y21 + 2y1
b(k)

c
+

(
b(k)

c

)2

+ y22 + 2y2
a(k)

c
+

(
a(k)

c

)2

− M

c
,

and, finally, coordinates y1, y2 satisfy the equation

y1 = −y2
a(k)

b(k)
− 1

2

b(k)

c
− 1

2

a2(k)

b(k)c
− 1

2
M

c

b(k)
+

1

2

M

b(k)
. (21)

From equation
y21 + y22 −M = 0,

where y1 is expressed by (21), we obtain(
y2
a(k)

b(k)
+

1

2

b(k)

c
+

1

2

a2(k)

b(k)c
+

1

2
M

c

b(k)
− 1

2

M

b(k)

)2

+ y22(k)−M = 0,

and, after some computation,

y22

((
a(k)

b(k)

)2

+ 1

)
+ y2

(
a(k)

c
+
a3(k)

cb2(k)
+M

a(k)c

b2(k)
−M a(k)

b2(k)

)
+

1

4

(
b(k)

c

)2

+
1

4

(
a2(k)

b(k)c

)2

+

(
1

2
M

c

b(k)

)2

+

(
1

2

M

b(k)

)2

+
1

2

a2(k)

c2

+
1

2
M − 1

2

(
M

c

)
+

1

2
M
a2(k)

b2(k)
− 1

2

a2(k)

b2(k)

M

c
− 1

2
M2 c

b2(k)
−M = 0, (22)

Equation (22) is quadratic with respect to y2 in the form

α(k)y22 + β(k)y2 + γ(k) = 0 (23)
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with coefficients

α(k) =

(
a(k)

b(k)

)2

+ 1,

β(k) =
a(k)

c
+
a3(k)

b2(k)c
+M

a(k)c

b2(k)
−M a(k)

b2(k)
,

γ(k) =
1

4

(
b(k)

c

)2

+
1

4

(
a2(k)

b(k)c

)2

+

(
1

2
M

c

b(k)

)2

+

(
1

2

M

b(k)

)2

+
1

2

a2(k)

c2
+

1

2
M − 1

2

M

c
+

1

2
M
a2(k)

b2(k)
− 1

2

a2(k)

c

M

b2(k)
− 1

2
M2 c

b2(k)
−M.

For the discriminant D∗(k) of equation (23) we derive

D∗(k) =β2(k)− 4α(k)γ(k) =

(
a(k)

c
+
a3(k)

b2(k)c
+M

a(k)c

b2(k)
−M a(k)

b2(k)

)2

− 4

((
a(k)

b(k)

)2

+ 1

)

·

(
1

4

(
b(k)

c

)2

+
1

4

(
a2(k)

b(k)c

)2

+

(
1

2
M

c

b(k)

)2

+

(
1

2

M

b(k)

)2

+
1

2

a2(k)

c2
+

1

2
M − 1

2

M

c
+

1

2
M
a2(k)

b2(k)
− 1

2

a2(k)

c

M

b2(k)
− 1

2
M2 c

b2(k)
−M

)
.

Obviously, D∗(k) = D(k). Since, by the hypotheses of Theorem 3.1, we have D(k) < 0, the
equation (23) has no real roots and the circles S1(k + 1), S2(k + 1) have no point of intersection.
Let us clarify the mutual position of discs D1(k+1) and D2(k+1). We show that the disc D1(k+1)
is embedded into the disc D2(k+1). As circles S1(k+1) and S2(k+1) have no points of intersection
it is sufficient to prove that a point lies both in disc D1(k + 1) and disc D2(k + 1). For this test
choose the point

O = (k + 1, 0, 0).

Obviously, O ∈ D1(k + 1). If also O ∈ D2(k + 1), then, as it follows from the definition of
D2(k + 1), formula (20), the inequality(

pg1(k)− qg2(k)

p2 + q2

)2

+

(
qg1(k) + pg2(k)

p2 + q2

)2

− M

p2 + q2
< 0

must hold. This inequality can be rewritten as

b2(k)

c2
+
a2(k)

c2
− M

c
< 0

and holds obviously due to hypothesis (19).

iii) Application of Theorem 2.3. To apply Theorem 2.3, set n = 2,

F (k, y) = (F1(k, y1, y2), F2(k, y1, y2)) = (py1(k) + qy2(k) + g1(k),−qy1(k) + py2(k) + g2(k)),

8
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F(k, y) = (k + 1, F (k, y)) = (k + 1, py1(k) + qy2(k) + g1(k),−qy1(k) + py2(k) + g2(k)),

Ω(k) := intD1(k), ∂Ω(k) = S1(k)

Then, C[∂Ω(k] = S2(k + 1) and the mapping

F : ∂Ω(s) = S1(s)→ C[∂Ω(s)] = S2(s+ 1)

is bijective because det J4 = c 6= 0. The set C[∂Ω(s)] is the boundary of a 2-dimensional closed
domain D2(s+ 1), homeomorphic with the 2-dimensional closed ball,(

Ω(s+ 1) = D1(s+ 1)
)
⊂ (D(s+ 1) = D2(s+ 1))

and (
Ω(s+ 1) = D1(s+ 1)

)
∩ (∂D(s+ 1) = S2(s+ 1)) = ∅.

All hypotheses of Theorem 2.3 hold. Therefore, there exists at least one initial point y∗(a) = ya∗
with (a, ya∗) ∈ D1(a) such that the solution y = y∗(k), k ∈ N(a) of system (1), (2) satisfies

(k, u∗(k)) ∈ Ω(k) = intD1(k)

for every k ∈ N(a), that is

(k, u∗(k)) ∈ Ω(k) = intD1(k) = {(k, y1, y2) : y1 ∈ R, y2 ∈ R, y21 + y22 −M < 0}.

The inequality
y21 + y22 −M < 0 ∀k ∈ N(a)

is equivalent with inequality (16). �

4 EXAMPLE

Let the system (1), (2) be reduced to the following one:

y1(k + 1) = 2y1(k) + 2y2(k) + 1, (24)
y2(k + 1) = −2y1(k) + 2y2(k)− 1, (25)

where k ∈ N(a) and a ∈ N is arbitrary fixed. We have p = q = 2, g1(k) ≡ 1 and g2(k) ≡ −1. In
the considered case we have

a(k) := qg1(k) + pg2(k) = 0, b(k) := pg1(k)− qg2(k) = 4, k ∈ N (a),

c := p2 + q2 = 8.

Set M = 4. Then

D(k) :=

(
a(k)

c
+
a3(k)

c

1

b2(k)
+M

a(k)c

b2(k)
−M a(k)

b2(k)

)2

− 2

((
a(k)

b(k)

)2

+ 1

)

·

(
1

4

(
b(k)

c

)2

+
1

4

(
a2(k)

b(k)c

)2

+

(
1

2
M

c

b(k)

)2

+

(
1

2

M

b(k)

)2

9
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+
a2(k)

c2
+M − M

c
+M

a2(k)

b2(k)
− a2(k)

c

M

b2(k)
−M2 c

b2(k)
− 2M

)
=− 2

(
1

4

(
16

64

)
+

(
1

4
· 16 · 64

16

)
+

(
1

4
· 16

16

)
+4− 4

8
− 16

8

16
− 8

)
= −61

8
< 0.

Moreover

(p2 + q2)M + g21(k) + g22(k) = 8 · 4 + 2 = 34,

2
√
M(|a(k)|+ |b(k)|) +M = 2 · 2 · 4 + 4 = 20,

and inequality (18) holds. Inequality (19) holds as well because

a2(k) + b2(k) = 16 < Mc = 32.

All hypotheses of Theorem 3.1 are fulfilled. Therefore, the system (24), (25) has at least one
solution y(k) = (y1(k), y2(k))T , k ∈ N (a) satisfying inequality (16), i.e.

y21(k) + y22(k) < 4, ∀k ∈ N (a). (26)

System (24), (25) is an autonomous one and it is easy to see that there exist a bounded constant
solution

y1(k) = −3

5
, y2(k) = −1

5
, ∀k ∈ N (a)

satisfying inequality (26).

5 CONCLUDING REMARKS

The paper proves the existence of a bounded solution to system of two difference equations (1),
(2). This system is a particular case of system (4), (5) provided that the matrix A has two complex
conjugate eigenvalues λ = p ± iq where p, q are real constants, q 6= 0 and i is the complex unit.
Previous results (e.g. [4, 5]) are, in general, applicable to systems where the matrix A has two
different real eigenvalues, or has one real eigenvalue with geometrical multiplicity equaling 2 or 1
while the case of A having two complex conjugate eigenvalues has not yet been considered. For
other asymptotic investigations of the behavior of solutions to systems of discrete equations, we
refer, e.g., to [1, 7, 14, 15, 17] and to the references therein.
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Abstract: The aim of the article is to show how it is possible to introduce to students the 

problem of functional equations and the study of orbital structures of real functions connected 

with them. These orbital structures enable solving some types of functional equations of a single 

variable. Some of the problems shown in the article can be solved with the help of the computer 

programs, which can be used as the motivation for introducing programs MAPLE, DERIVE 

etc.  
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INTRODUCTION 

 

Functional equations of a single variable are a significant section of a general theory of 
functional equations (e.g. [2], [8], [9], [10]). Frequently, they serve for mathematic modelling 
of real situations and appear as tasks in the highest levels of mathematic Olympiad. Therefore, 
it is important to introduce their solving to students. Solving functional equations of more 
variables is generally quite simple as students can use various alternatives while substituting 
specific values of variables or they can use Cauchy method of solving (See e.g. [2], [5], [9], 
[10]). However, solving functional equations of a single variable is more challenging for them.  
The use of iterative theory of functions and their interpretation with the help of vertex graphs 
seems beneficial. With respect to the didactic orientation of the article, let us present a brief 
outline of the theory which is necessary for solving functional equations of a single variable. 
The detailed survey of the theory, including proofs of following theorems, could be found in 
e.g. [8], [9], [10], [11].   
 
 
1. ITERATIVE THEORY OF FUNCTIONS 

 

1.1. Orbits and vertex graphs of functions 

 

The mapping f: X  X of the set X into itself will be called transformation of the set X. For n 

N0 let us define n-th iteration f of the set X as follows: f 0(x) = x, f 1(x) = f(x), f n(x) = (f o f n-

1)(x) for every x X; in the shortened form we can note f n = f o f n-1. If the transformation f is a 
bijective mapping of the set X onto itself, the definition of this given set iteration can be 
broadened also for a non-negative integer n in the following way: let f 1 be an inverse function 
to the function f on the set X, then f 2 = f 1 o f 1, f n = (f 1)n. It is necessary to carefully 
distinguish between the notation of the n-th iteration of the function f, which is f n (the value of 
this iteration for the element x is f n(x)), and the formula [f(x) ] n, which equals f(x) . f(x) . ... . 

f(x). 
     Every transformation f of the set X determines the equivalence ~f  on X as follows: x ~f  y, if 
and only if there exists such pair of positive integers m, n that f m(x) = f n(y). The blocks of the 
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decomposition of the set X determined by the equivalence ~f  are called orbits of the 
transformation f, in short f-orbits. The set containing elements x, f(x), f 2(x), f 3(x), ... is called 
the iterative sequence starting in x or the f-splinter of the element x.  
     Let k  N, then the cycle of the order k (k-cycle) of the mapping f: X X is the set {x0, x1, 

..., xk-1} consisting of the set X elements for which there applies f(xm) = xm+1 pro 0   m   k1 
and f(xk-1) = x0. The orbit containing a cycle is called a cyclic one, otherwise  an acyclic one. 
For k = 1, the element x X with the property f(x) = x is called the fixed point of the 
transformation f. 

Now let us give some orbit properties which will be further used: 

 Every orbit contains one cycle at most. 
 The orbit is acyclic if and only if for its every element there applies that the corresponding 

iterative sequence contains infinitely many elements. 
 Every finite orbit is cyclic (the chain ending in in the cycle is not infinite, although it 

contains infinitely many elements). 

In the case of injective transformation f, the orbits are either isolated cycles, two-sidedly 
infinite chains or infinite chains bounded from below by the least elements; if f is a bijection, 
its orbits are either cycles or two-sidedly infinite chains. The set of orbits of the function f 
is also called the orbit structure. The graphic representation of orbits is a vertex graph. In 
the most general sense, we can encounter a vertex graph as the graphic representation of 
binary relations. If X is a non-empty set and R is a binary relation on the set X, then a pair 
(X, R) is called the oriented graph. The elements of the set X are called vertices or nodes 
(represented as points in the plane), the pairs (a, b)  R are called oriented edges, the vertex 
a is called the initial one, and b is called the end one. While representing we draw an arrow 
leading from the point a to the point b; in the case a = b, we draw a loop around the point 
a). The oriented graph (X, R) is called a functional one (the vertex graph of a mapping), if 
the relation R  X  X is the mapping of the set X into itself (i.e. every vertex is the initial 
vertex of just one edge). It is evident that a vertex graph could be plotted as the whole only 
for transformations of finite sets with not very many elements. In other cases we will only 
outline the orbits. The comparison of vertex and Cartesian graphs is quite instructive. Here 
follow two illustrative examples. 

a) Let X = R, for every x  X there applies f(x) =  x. The only fixed point is number zero, for 
other elements of the set X there holds f 2(x) = x. The orbits of the function f are then cycles of 
order 2 (they are infinitely many) and one loop. Here is also a Cartesian graph for comparison.  

 

 
Fig. 1. Cartesian and vertex graph of function f(x) = x. 

Source: own 
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b) Let X = R  {0}, for every x  X there applies f(x) = x1. For x  {1, 1} there holds f(x) = 

x, for other elements of the set X there holds f 2(x) = x. The orbits of the function fare then two 
loops (fixed points) and uncountably many cycles of order 2. 

 

 
Fig. 2. Cartesian and vertex graph of function f(x) = x1. 

Source: own 
 

Let us notice the comparison of the vertex and Cartesian graphs on both examples. Although 
the Cartesian graphs are completely different, the vertex graphs are almost identical (only save 
for the number of loops and the marking of vertices).  

 
In the last part of the theoretical outline, let us introduce the notion conjugacy of functions. Let 
X, Y be sets. The function g: Y  Y is called orbitally homomorphic to function f: X  X, if 
there exists a function h: X  Y with the property h o f = g o h. The mapping h is called an 
orbital homomorphism. In addition, if it is bijective, then it is called an orbital isomorphism. In 
the case of X = Y we speak about an orbital endomorphism or an orbital automorphism. Orbitally 
isomorphic functions are called conjugated. Functions f: X  X, g:Y  Y are conjugated if and 
only if there exists a bijection h: X  Y such that for each pair of elements x, y  X and each 
pair of non-negative integers m, n there holds: f m(x) = f n(y)  gm(h(x)) = gn(h(y)). A more 
detailed description of conjugated functions is in [4]. It is possible to expect that conjugated 
functions have “the same” vertex graphs. If they are not the same, during solving the problem 
of conjugacy it is necessary to restrict the domains of functions so that the orbits with different 
vertex graphs are “removed”. Let us give an example. Here are two real functions f: R R, g: 

R R, f(x) = ax + b, g(x) = ax + c, a,b  0, c  R. Functions f, g are conjugated because there 

exists a bijection h: R  R  which is defined for a = 1 by a formula h(x) = 
b

c
x + n,  n  R 

arbitrary, for a  1 by a formula h(x) = mx + 
1a

cmb



 , m  R  {0} arbitrary. The conjugacy 

can be easily verified from the definition 

 
 

1.2. Iterative roots 

 

In this part we will devote our attention to the problem of iterative roots and their determining. 
At first sight, it seems that this topic does not belong to the functional equations theory, but we 
will further show that it is not the case. For detailed information see [2], [9], [11]. 
     Let X  , let f be the mapping of the set X into itself, the number m  N, m  1.The main 
problem of the iterative theory is to find such an  arbitrary mapping g of the set X into itself that 
for every element x of the set X there applies: 

1 3

0 x

y

2-1
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g m = f 

The mapping g is called the iterative root of the order m of the function f or the m-th iterative 
root of the function f. We will now briefly outline the general theory of the existence and 
construction of iterative roots. For the didactic purposes, it is essential that in special cases (real 
elementary functions, bijective functions, ...) while solving functional equations of one variable 
it is not necessary to apply complicated theorems from the general theory, but a more efficient 
solution is possible. The following theorems 1 to 13 are taken from the publication [11], where 
you can find their proofs. 
Theorem 1: Let X  , let  f, g be such mappings of the set X that gm= f, m  N. Then the 
mapping is surjective if and only if f is surjective. 

Theorem 2: Let X  , let f, g be such mappings of the set X that gm = f, m  N. Then the 
mapping g is injective if and only if f is injective. 

Theorem 3: Let X  , let f, g be such mappings of the set X that gm = f, m  N. Then the 
mapping g is bijective if and only if f is bijective. 

     Now we will show the solution of a simple functional equation of one variable gm(x) = x on 
a non-empty set X, m is a natural number bigger than one. A trivial solution is the identical 
equation g(x) = x itself, therefore we search for the non-trivial solution. The orbital structure of 
the identical function consists of isolated fixed points. The identical function is bejective, 
therefore according to Theorem 3 function g is bijective. The orbital structure of the bihection 
can contain only cycles and two-sidedly infinite chains. However, as gm(x) = x, such chains are 
excluded at the mapping g. Therefore the desired function g must containonly cycles, while the 
order of these cycles must be the divisor of number m. Now the discussion of the solution 
depends on number m and the cardinality of the set X. If e.g. m is a prime number, the orbital 
structure of the desired function g contains either m-cycles or fixed points. The general solution 
can be described as follows: Let number m has r+1 divisors m0, ..., mr. Without detriment to 
generality, these divisors can be denoted so that it holds 1 = m0   m1  ...  mr-1   mr = m. We 
will decompose the set X to r+1 blocks so that the elements of the set X in each block will form 
only mi-cycles for i = 0,..., r (some of these blocks can be empty). The mapping g, whose orbital 
structure contains blocks with mi-cycles, is the solution of the equation gm(x) = x. 

Theorem 4: Let g be the m-th iterative root (m N, m  2) of the mapping f of the non-empty 
set X. Then every g-orbit is the union of p f-orbits, where mp . If p   m, then all g-orbits are 

n-cyclic, while np . In addition, all f-orbits are 
p

n - cyclic and at the same time the greatest 

common divisor (GCD) of numbers m, n equals p. 

      Theorem 4 describes properties of iterative roots provided that they exist. Now let us state 
the necessary and sufficient conditions for the existence of iterative roots.  

      Let f be the mapping of the set X into itself, let r, m be natural numbers with the property
mr . Let the mapping f contain at least r orbits and let there be given arbitrary r f-orbits. These 

orbits will be denoted m-mateable (by any mapping g), if g is the m-th iterative root of the 
function f, has one orbit and maps the union of the given r f-orbits into themselves. For r = 1 
this only f-orbit is called m-self-mateable. 

Theorem 5: If in the previous text there applies r  m, then the necessary condition for the m-
mateability of r f-orbits is the fact that each of them is k-cyclic (with the same k) and tere applies 
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that GCD (k,
r

m
) = 1. The corollary of this Therem is, among others, the fact that an acyclic f-

orbit cannot be m-self-mateable for any m.  

Theorem 6: An arbitrary mapping of a non-emptyset has the m-th iterative root (m  N) if and 
only if the set of orbits of this mapping can be decomposedto disjoint blocks with following 
properties: 

1o   The number of orbits in each block is finite and is the divisor of the number m. 

2o   Orbits in each block are m-mateable. 

Theorem 7: For the existence of the m-th iterative root (m  N, m  2) of the mapping f: X  

X it is sufficient if in the orbit structure of the function f there exist for each occurring orbit type 
either infinitely many orbits of such type or their number is divisible by number m. 

Theorem 8: Let f be the bijection of any set into itself. Let us denote l0 the number of the two-
sidedly infinite chains, lk be the number of k-cycles of the mapping f, k  N. Then there exists 
the m-th iterative root (m  2, m  N) of the mapping f if and only if for every non-negative 

number k there applies either lk =  or dk|lk, where d0 = m, dk = 
km

m
(k  N), while mk denotes 

the greatest common divisor of the number m, which is coprime to the number k. 

Theorem 9: Let f: X  X be such bijection that in its orbit structure for every k  N0 there 
applies either lk = 0 or lk =   (according to the notation in Theorem 8). Then f  has the m-th 
iterative root for every natural number m. For the orbits of this iterative root there also applies 
either l

k
= 0 or l

k
=   for all k  N0. 

Theorem 10: Every strictly increasing and continuous bijection R on R has iterative roots of all 
orders. 

Theorem 11: The strictly decreasing and continuous bijection of the set R has iterative roots of 
all orders if and only if it has either infinitely many 2-cycles or none. 

Theorem 12: Every strictly decreasing and continuous bijection R has iterative roots of all odd 
orders. 

Theorem 13: Let  f be an arbitrary transformation of the set R which contains for a fixed natural 
number m, m  2, at least m f-orbits. Let be given m such orbits. Then there applies: If these f-
orbits are  orbitally isomorphic to each other (i.e. of the same type), then they are m-mateable. 
 
 
2. FUNCTIONAL EQUATIONS OF A SINGLE VARIABLE - EXERCISES 

 
Exercise 1. At the 28th year of the International Mathematics Olypiad in 1987 appeared the 
following exercise ([13)]: 

     Prove that there does not exist the function f mapping the set N
0 = {0, 1, 2,...} of all non-

negative numbers to  N
0
 such that f(f(n)) = n + 1987 for every n N

0
.  

     In the authorial solution of this exercise (according to [13]) there was used the proof by 
contradiction. Let us show this solution for information. 
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Let us assume that such function f exists. Obviously, for function f there applies from the task: 

f (x + 1987) = f(f(f(x))) = f(x) + 1987,                                                            

from this using induction we will prove the validity of the equality  

f (x + k.1987) = f(x) + k.1987 pro x  N
0
, k  N

0
. 

The function f is therefore given unambiguously by its values on the set M = {0, 1, 2, ..., 1986}. 
We will define on M a new function g as follows: For x  M we will express f(x) in the form 

f(x) = y + p.1987, where y  M, p  N
0  

and state g(x) = y. As from the previous form there applies 

x + 1987 = f(f(x)) = f (y + p.1987) = f(y) + p.1987, 

then necessarily there must apply   
f(y) = x + (1  p)1987  N

0
, 

so p = 1 or p = 0 or 0   p  1. From the last expression of f(y) there results g(y) = x, so there 
holds g2(x) = x. As the number of the elements of the set M is odd, (card M = 1987), there must 
exist x

0
 M with the property g(x

0
) = x

0
. However, from the definition of g it means that   there 

will arise one of two possibilities: f(x
0
) = x

0 or f(x
0
) = x

0 + 1987. In the first case then there 
applies x

0 + 1987 = f(f(x
0
)) = f(x

0
) = x

0
, in the second case we will obtain x

0 + 1987 = f(f(x
0
)) 

= f(x
0 + 1987) = x

0 + 3974. In both cases we reached the contradiction, so the function f cannot 
exist. 

     Now let us use the iterative theory of functions. First, we will find the vertex graph of the 
function (x) = x + 1987 and then we will search for its second iterative roots. Function (x) 

= x +1987 is not a bijection on the set N
0
, but it is an injection. It has no fixed points and its 

orbits are mutually isomorphic chains bounded from below. There are 1987 such chains, their 
least elements are 0, 1, ..., 1986. The vertex graph is outlined in Fig. 3: 

 
Fig. 3. Vertex graph of function (x) = x + 1987. 

Source: Own 

The difficulty of this task is to prove tht the function  does not have the second iterative root, 
i.e. that -orbits are not  nejsou 2- mateable. The main idea of this proof is the fact that that 
there is an odd number of orbits. The orbits are not cyclic, therefore according to Theorem 5 
they cannot be self-mateable. According to Theorems 5 and 6, for the existence of the second 
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iterative root the number of -orbits has to be even (orbits can be mated only in pairs). This 
does not hold, so the function  des not have the iterative rootof order 2.  

Note: With the help of iterative theory it is possible to generalize this exercise. The first question 
is if the function (n) = n + 1987 has any own iterative roots (different from the trivial iterative 
root of order 1, which is the functionkce (n) itself). With respect to Theorems 5 and 6 it is 
obvious that we are searching the possibility of the mating of the existing 1987 orbits. As 1987 
is a prime number, the only possible own iterative root is the root of order 1987. Thus there 
exists the function f: N

0
 N0 with the property f 1987

(n) = n + 1987 for n  N
0
. This function f 

is the successor function 0 on N
0
, defined by the formula f(n) = n +1. The next difficulty is to 

find out when in general there exist own iterative roots of the function (n) = n + c, n  N
0
, c 

 N. The vertex graph now contains just c isomorphic orbits (chains bounded from below with 
the least elements 0, 1,..., c-1). These chains have to be mated. Similarla as above, there always 
exists the iterative root of the order c (which is the function f(n) = n + 1). Furter, there always 
exist iterative roots of these orders which are the divisors of the number c. Therefore, the 
iterative root of the order 2 exists if the number c is an even number. If the problem was set for 
the function f(n) = n + 1988, the second iterative root would exist (further there would exist 
iterative roots of orders 4, 7, 14, 28, 71, 142, 284, 497, 994, 1988).  
 
Exercise 2. There is given the quadratic function f(x) = x2 2. Find the vertex graph of this 

function and with the help of it solve the functional equation g(x2) = [g(x)] 2  2 (See [3]).  
     The main difficulty while designing the vertex graph will consist in searching the cycles of 
the given quadratic function f(x) = x2  2.  If we want to determine whether the function f has 
the cycle of the order n, we have to solve the equation f n(x) = x, where f n is the n-th iteration 
of the given function. For n = 1 while solving the quadratic equation we will easily discover 
that the function f has two fixed points 1 and 2. For n = 2 we will solve the equation x4 
4x2x+2 = 0. Although solving biquadratic equations is quite difficult algorithmically, in our 
case we will find the solution easily; we already know two roots x1 = 1, x2 = 2, therefore using 
e.g. Horner´s scheme we will find the decomposition of the given biquadratic equation 

(x+1)(x2)(x2+x+1)= 0, from which we will calculate x3,4 = 
2

51
. It is easy to verify that 

the two last mentioned irrational roots indeed form the 2-cycle of the function f. Naturally there 
arises a question whether the function f(x) = x2 2 has further cycles of higher orders. For the 
search for the cycles there seems of great use the book by J. Smítala [10], which includes the 
Theorem of A. N. Šarkovskij. It says the following:  

     „Let f be a continuous function from the interval I to I. Let us introduce a new ordering on 

the set of all natural numbers as follows: 3   5   7  ...   2.3   2.5   2.7  ...   2i.3   2i.5 

  2i.7  ...   2j+1   2j  ...   8   4   2   1. Thus first there are odd numbers in the natural 

ordering, then their doubles, then their quadruples, etc. The ordering ends with the powers of 

number 2 in the descending order. Then there holds: If the function f has a cycle of order m and 

there holds m   n, then the function has also a cycle of order n“.  

     According to Šarkovskij ordering, the next possible cycle will be the cycle of the order 4. 
We will determine it while solving the algebraic equation f 4(x) = x, which after substituting 
has the form 
x16  16 x14 + 104 x12  352 x10 + 660 x8  672 x6 + 336 x4  64 x2 + 2 = x.  
For solving this equation of the order 16 it is necessary to use the computer technology. With 
the help of such tool we will find out thet such equation has 16 different real solutions, while 
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all of them lie in the interval (2, 2).  We already know four of them; these are all the elements 
which form cycles of orders 1 and 2 and have been given above. The next twelve solutions form 
three 4-cycles. 
      The next possible cycle is the cycle of the order 8. While its determining, it is necessary to 
solve the algebraic equation f 8(x) = x, which has the order 256. The use of a computer is 
inevitable. It results in 256 differentreal solutions which all lie in the interval 2, 2. Among 
these roots certainly belong the 16 solutions which were found while searching for the cycle of 
the order 4. The conclusion is that the function f(x) = x2 2 has also the cycle of the order 8, 
aanfd not only one, but thirty of them (256 solutions, among them two fixed points, one cycle 
of the order 2, three cycles of the order 4 and 30 cycles of the order 8).  
     It is evident that searching for other cycles of higher orders is practically impossible. 
According to Šarkovskij Theorem We will focus our attention to the cycle of the order 3. If we 
prove its existence, the function f will have cycles of all orders. Here we will show the 
connections with other mathematics areas as well. 

     The cycle of the order 3 will be determined while solving the equation f 3(x) = x which after 
substitution has the form 

x8  8 x6 + 20 x4  16 x2  x + 2 = 0.  

With the help of a computer we will algebraically determine eight real solutions (as above, all 
of them lie in the interval 2, 2 ). We already know two roots (fixed points 1 and 2). The 
next roots are: 

x1 = 
2

1 3 3i44  + 
3 3i44

2


,  

x2 = 
4

1
 3 3i44   

3 3i44

1


 + 3i
2

1
(
2

1 3 3i44   
3 3i44

2


), 

x3 = 
4

1
 3 3i44   

3 3i44

1


  3i
2

1
(
2

1 3 3i44   
3 3i44

2


), 

x4 = 
6

1 3 3i8428  + 
3 3i8428

3

14


  
3

1
,  

x5 = 
12

1
 3 3i8428   

3 3i8428

3

7


 + 3i
2

1
(
6

1 3 3i8428   
3 3i8428

3

14


), 

x6 = 
12

1
 3 3i8428   

3 3i8428

3

7


  3i
2

1
(
6

1 3 3i8428   
3 3i8428

3

14


). 

Further we will determine the decomposition of the polynomial x8  8 x6 + 20 x4  16 x2  x + 

2. We will get the product  

(x + 1)(x  2)(x3  3x + 1)(x3 + x2  2x  1). Numbers x1, x2, x3 are the roots of the polynomial 
x3  3x +1 and numbers x4, x5, x6 are te roots of the polynomial x3 + x2  2x 1. Using a precise 
calculation, we will verify the existence of the 3-cycle which is formed by numbers x1, x2, x3.  
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First of all, we have to „rearrange“ these numbers. If we transform the complex number 

3i44   to the goniometric form 8(cos
3

2
 + i sin

3

2
), we can determine three values of 

the root 3 3i44  . 

The first one is 2(cos
9

2
 + i sin

9

2
 , further 2(cos

9

8
 + i sin

9

8
), 2(cos

9

14
 + i sin

9

14
). 

If we substitute the first of these values to the formula for the root x1, we will get the real value 

x1 = 2 cos
9

2
. Now let us verify the existence of the 3-cycle: 

x1
2  2 = 2 cos

9

4
, (x1

2  2)2  2 = 2 cos
9

8
, ((x1

2  2)2  2)2  2 = 2 cos
9

16
.  

As there applies cos
9

2
 = cos

9

16
, real numbers 2cos

9

2
, 2cos

9

4
, 2cos

9

8 form the 3-

cycle of the function f(x) = x2 2. Analogically, we can verify (the calculation is a bit more 
laborious) that the triplet of roots x4, x5, x6 also forms the 3-cycle. 
     In order to finish examining cycles of the function f(x) = x 2 2, there remains to verify the 
hypothesis that elements of all cycles lie in the interval 2, 2 (thus hypothesis follows from 
the calculation while searching for the roots). For x  2 we can determine through the calculation 
that x2 2  x and thus trivially x2 2  2. All natural iterations of the function f form an 
increasing sequence for x  2, therefore there cannot hold f n(x) = x. As the function f  is even, 
there holds the corresponding assertion also for numbers x  2. In the conclusion we can state 
that the vertex graph of the function f(x) = x 2 2 has cycles of all possible orders whose values 
lie in the interval 2, 2.  

     Now we can already design the vertex graph of the function f(x) = x2 2. As the range of this 
function is the interval 2,  ), it is evident that numbers less than 2 cannot be the functional 
value of the function f for any real number x. Numbers from the interval ( , 2) are therefore 
the minimal elements, in the vertex graph they do not have any predecessor. Numbers from the 
interva (2,  ) have two predecessors; one of them is in the interval (2, ), the secod one is in 
the interval ( , 2) because f is an even function. This follows from the following 
consideration:  Let x2 2 = u, where u  2. Then x = 2u    4 = 2.  As the given function 
is even, we can claim that positive numbers higher than two form both-sidedly infinite chains 
on which at every point one opposite negative number less than  2 is “connected”. With the 
contraction of the domain of the function f(x) = x2 2 to the union of intervals ( , 2)  (2, 
 ) its orbits are therefore the same as infinite orbits of the quadratic function q(x) = x2 (See 
Fig. 4). In the iteration theory these orbits are called both-sidedly infinite chains with short 
chains. The detailed description of the vertex graph of the function q(x) = x2 is given in [6]. 
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Fig. 4. Infinite orbits of the quadratic function q(x) = x2 

Source: Own 

Therefore we can claim that there exist a function g on these intervals which is the solution of 
the functional equation g(x2) = [g(x)]2  2. Both functionscontain uncountably many orbits of 
the same form. We will create pairs of orbits (one f-orbit and one q-orbit) and the funvction g 

matches mutually corresponding elements of both orbits. The detailed information about this 
task can be found in the article [6]. For the chosen pair of orbits we will determine the 
functional formula for the function. We will denote Of  as the orbit of the function f, and Oq as 
the orbit of the function q. We will choose any element of the orbit Oq, which we will denote; 
in the orbir Of we will also choose an element y0. Let x0  2, y0  2. The function g: Oq  Of  

is then defined e.g. as follows: For k  N0 let there applies g(
k2

0x ) =  f k(y0), g(
k2

0x ) = f 

k(y0), g(
k2

0x ) =  k1f  (y0), g(
k2

0x ) =   k1f  (y0), where f 1 is the inversive function to 

the function f in the interval (2, ), defined by the formula f 1(y0) = 2y0  . Let us further 
mention that for the zero iteration there holds f 0(x) = x for every real number x and for every 
function f. In the function g defined by the above given way really satisfies the given 
functional equation.  
For numbers from the interval 2, 2 the situation is completely different. It is evident that in 
the interval 2, 2 the sought for conjugating function g cannot exist, i.e. the equation g(x2) = 

[g(x)] 2 2 does not have a solution. Vertex graphs of functions q and f are totally different – 
the orbits of the function q are acyclic (except for the fixed points 0 and 1) and the orbits of 
the function f contains cycles of all orders. The detailed justification of the non-existence of 
the conjugating function g could be found in the publications, e.g. [2], [7], [11]. 
 
Example 3. There is given the quadratic function f(x) = x2+ 2. Find the vertex graph of this 

function and with its help solve the functional equation g(x2) = [g(x)] 2 + 2 (See [3]).   

Let us consider the functional equation g(x2) = [g(x)]2 +2. We will see that the modification 
which from the continunous aspect seems unimportant will substantially change the vertex 
graph of one of the functions. It deals with the question if the functions q(x) = x2 and (x) = 

x2+ 2 are conjugated. The vertex graph of the function q was described earlier, so we will deal 
with the vertex graph of the function . It was Descibed in detail in the author´s article [1], 
therefore we will mention it briefly. In this case neither the fixed points nor other cycles exist, 
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all orbits are infinite and acyclic. For their description we will use an auxiliary function , 
defined on the set of all natural number as follows:  

𝜔(𝑛)  =  {
𝑛 + 2 𝑓𝑜𝑟 𝑛 𝑜𝑑𝑑
𝑛 + 1 𝑓𝑜𝑟 𝑛 𝑒𝑣𝑒𝑛

 . 

The function (x) = x2+ 2 contains the only orbit of the same form (i.e. isomorphic) to orbit 
(N0, ) and further it contains uncountable many orbits same as (N, ). All orbits of the 
functions  are elements bordered from below from the interval (2, 2). As the orbits of the 
function q are both-sidedly infinite (i.e. not borbdered from below and above, if we do not 
consider two finite orbits for numbers 0, 1, 1) and the orbits of the function  are bordered 
from below, it is impossible for the bijective function g to exist, with the help of which both 
functions would be conjugated for all real numbers.  
 
Exercise 4. Prove that there exists an injective mapping R to R which does not have the n-th 
iterative root for any n  2. (See [12]).   

The proof of the existence of the sought for mapping will be prformed in two ways, although 
in the second one only theoretically without defining the given mapping by the functional 
formula. We want to prove that there exist the bijection on R which has no own iterative roots. 
Let us mention that the vertex grapg of the bijection contains only cycles and both-sidedly 
infinite chains. From the general theory there follows that the bijective mapping has no own 
iterative roots if and only if it contains only one both-sidedly infinite chain or if it contains 
infinitely many cycles, each of different orders. Now let us describe two possible cases: 

a) f(x) = x + 1 for every x  Z, f(x) = x for x  R  Z. Such mapping f contains the 
onlyboth-sidedly infinite chain and infinitely many loops. 

b) We will decompose the set of all natural numbers to infinitely many blocks of 
decomposition whose cardinalities are different to each other and thea are given by all 
natural numbers, so e.g. {1}, {2, 3}, {4, 5, 6}, {7, 8, 9, 10}, ... In every block we will 
define the mapping f as the cyclic permutation, for every x  R  N we will set  f(x) = 

x. This mapping f contains infinitely many loops and infinitely many cycles of all 
possible orders.  

     In either of the two cases the described function f has no own iterative roots. 
 

Note: As the last remark in conclusion let us mention some interesting assertions dealing with 
designing cycles of the function f(x) = x2 2. In the previous text we established through a 

precise calculation the cycle of the order 3, whose values are 2cos
9

2
, 2cos

9

4
, 2cos

9

8
. 

While calculation we used, among others, that for k N there applies generally the equation 

(2cos
9

k
)2 2 =2cos

9

k2 
. The just given relation can be generally formed for every real 

number x as follows: (2cos x)2 2= 2cos2x. Therefore the sequence of iterations of the function 
f(x) = x2 2 is for x = 2cos x as follows: 2cos x, 2cos 2x, 2cos 4x, 2cos 8x, ..., 2cos 2k x, .... Such 
sequence of iterations will contain the cycle of the order m, if and only if for some natural 
number k will hold 2cos 2k x = 2cos 2k+m x. The last goniometric function can be solved 
generally using familiar formulas, to make it simpler we can set k = 0. The elements of the 2-
cycle will be calculated with the help of the goniometric equation 2cos x = 2cos 4x. As the 
result we have two possible 2-cycles:  
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2cos
3

2
, 2cos 

3

4 a 2cos
5

2
, 2cos 

5

4
. Both values of the elements of the first of the 2-cycles 

equals 1 (the fixed point of the function f, i.e. also the cycle of the order 2), values of the 

second of the 2-cycles have been already established as 
2

51
. Then there must hold 2cos

5

2
=

2

51
, 2cos

5

4
= 

2

51
, which is an interestingpossibility how to precisely 

express the values of goniometric functions with the help od roots. While searching for the 3-
cycle we will use the equation 2cos x = 2cos 8x. One of the solutions is already established 3-

cycle 2cos
9

2
, 2cos

9

4
, 2cos

9

8 ; the next solution is one more 3-cycle 2cos
7

2
, 2cos

7

4
, 

2cos
7

8
. It is obvious that in the general case we will not get all cycles in this process – the 

given method using goniometric equation enables for every natural number m to establish 
precise values of at least one cycle of the order m. For example for m = 4 one of the 4-cycles is 

formed by elements 2cos
17

2
, 2cos

17

4
, 2cos

17

8
, 2cos

17

16
.  

 

 

CONCLUSION 

 

This part where we dealt with functional equations of one variable is relatively extensive and 
contains a lot of theoretical notions. However, they are essential for solving eqatinons. Solving 
functional equations of one variable of the type f 3(x) = x, f 2(x) = x + 2, f 2(x) = x 2, f(x2) = 

[f(x)]2 etc. without knowing vertex graphs, orbit theory and their mateability is rather 
complicated and in many cases it is impossible. Let us note that theoretical parts were designed 
so that after a certain simplification they can serve the secondary school students (e.g. while 
preparing for mathematics olympiads). On the other hand they could serve the university 
students as the initial information and motivation for further study of the theory of iterations 
and iterative roots. It is obvious that studying cycles and vertex graphs of real functions offers 
a wide range of possibilities and topics for students for their independent creative work, further 
it provides connections with other mathematics areas (here with solving algebraic equations, 
goniometric equations etc.), which can lead to liven up mathematics teaching. Of great 
importance is also the motivational role of these aspects of mathematics teaching because the 
above given theory can lead the readers to solving even such functional equations which whe 
approached for the first time could seem beyond their strength. For example, solving the 
functional equation f 2(x) = cosh(x)  1 is analogical to the equation f 2(x) = x2 because the 
vertex graph of the quadratic function q and the function cosh(x)  1 is the same at first sight. 
The given types of functional equations of one variable are not the only ones; many of them 
can be solved e.g. with the help of the theory of recurrent sequences (e.g. the functional equation 
f(n + 1) = 3 f(n)  2 f(n  1)). Certainly, there exist much more complicated functional 
equations, including a lot of open problems in this area. Some of them could be found e.g. in 
mnographs by F. Neuman and M. Kuczma ([8], [9]). 
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Abstract: In this paper we offered an easy mathematical model to clarify how to define the time of
a choice answered on the incident. It can depend upon the stakes involved within the present situa-
tion. The model deals with the question of when the resource should be used on the condition that
its use today might prevent it from being available to be used later. The analysis provides concepts,
theory, applications, and distinctions to market the understanding of strategy aspects of cyber con-
flict. Case of concept studies includes the same cyberattack, the persistent cyber espionage applied
by some country’s military. This paper focuses on one aspect of the problem: the timing of an
answered cyber incident, either within of espionage or disruption. The goal of the paper is to push
the understanding of this domain of cyber incidents to mitigate the harm of cyberattacks can do,
and harness the capabilities they can provide.

Keywords: optimal responding, a cyber incident, probability, non-Markovian process, Reliability
and Stability, defense and attack.

INTRODUCTION

The paper takes a mathematical model offered to help analyze a choice for the optimal time for an
attack. In other words when the own weapon should be used by the attacker, knowing that its use
today may well prevent it from being effective later and find is the trade-off between waiting until
the stakes of the present situation are high enough to warrant the use of the weapon, and not waiting
so long that the vulnerability of the opponent might be discovered and patched. Studies [1,2]
have clearly recognized that a cyber weapon has a strong tendency to depreciate once used. The
implication has often explicitly drawn that it may pay to wait for an appropriate moment to deploy
an attack. Namely, the longer one waits the more likely the opponent will have recognized and
fixed the vulnerability one’s resource is meant to exploit. Our model specifies how to comprehend
the variables in this implicit logic of the timing of cyber conflict, to construct functional depend
between these variables, and how to solve the decision problem inherent in the trade-offs among
these variables.

In the present paper, we are going to be used here as a “cyber weapon”. A cyber weapon
needn’t be a weapon in the sense of something which will cause damage by itself, it can be used
for espionage within which case its use isn’t necessarily an attack. Additionally, a cyber weapon to
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take advantage of a target’s vulnerability might include nontechnical means either on their own or
in conjunction with technical means of intrusion. The present model is an adaption and extension
of the model developed to review “the rational timing of surprise” [3,4] and therefore the mathe-
matical instruments of this model [7,10]. Our model is presented from the angle of the attacker:
when should a cyber weapon be wont to exploit a vulnerability in an exceeding target’s network?
The results, however, are equally relevant to a defender who wants to estimate how high the stakes
must be so as for the offense to use an unknown vulnerability. Section 1 provides a model that
expresses the worth of a ”cyber weapon” for exploiting a vulnerability within the target’s ADP sys-
tem, then calculates when best to use that weapon. The event of our model provides some useful
recommendations including the Attacker and Defender of a weapon for exploiting a cyber vulnera-
bility. Section 2 concludes with a review of concepts and future avenues for research, and also the
implications of our model for the analysis of the cyber incident.

1 Model of the optimal timing

For constructing our model we introduce some assumptions and characteristics of cyber weapons.

1.1 Assumptions

Assumption 1. Rate. You know the rate in current states. You do not know what the rates will
be at any future state, although you do know the distribution of rates over time. The assumption
about trades means you may know that the rates are low today, and you may be able to estimate
the likelihood of various possible rates in the future, but you do not know when the rates associated
with a particular event will occur. In other words rates changes according to the non-Markovian
process [5,6].

Assumption 2. Characteristics and Value of probability a cyber weapon. For a cyber
weapon, we can estimate two parameters that determine whether the weapon will be available next
time t. These are the Reliability and the Stability of the resource. The Reliability of a resource is
the probability that if you use it now it will still be usable in the next time period. The Stability of
a resource is the probability that if you refrain from using it now, it will still be useable in the next
time period.

p = Reliability = P (cyberweapon|ifuseit) (1)

and
q = Stability = P (cyberweapon|ifnotuseit). (2)

Both p and q depend not only on the resource itself but also on the capacity and vigilance
of the intended target. The Reliability of a cyber weapon used against a well-protected target is
likely to be less than the Reliability of the weapon against a target that is not particularly security
conscientious. Likewise, a weapon will typically have less Stability against a target that keeps up-
to-date on security patches than one that does not. In the case of a distributed denial of weapon, the
effectiveness of the attack depends on the current capacity of the target to handle massive inputs,
whereas the ability of the attacker to repeat the attack depends on the target’s subsequent attainment
of sufficient capacity to handle another such attack.
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1.2 Main equations.

We will look at the implications of several distributions on the likelihood of various rates—such as
how likely high routes state events are compared with routine low-states events. That is, we have
a stochastic process — a set of random variables Xt, where the index t < T is time, which can
be discrete, but more often covers all real numbers in a certain interval. Just in time T (it s will
has means as Thousholds), we will carry out optimization further. As you know, the stochastic
properties Xt of are expressed by common distribution functions:

Pn (x1, t1;x2, t2; . . . ;xn, tn) dx1dx2 . . . dxn =

x1 < Xt1 < x1 + dx1, x2 < Xt2 < x2 + dx2, . . . , xn < Xtn < xn + dxn

When Xt1 = x1, Xt2 = x2, . . . , Xtk = xk specified, other variables perform conditional
probability distribution functions:

P (xk+1, tk+1; . . . ;xn, tn|x1, t1; . . . ;xk, tk) =
Pn(x1, t1; . . . ;xk, tk;xk+1, tk+1; . . . ;xn, tn)

P (x1, t1; . . . ;xk, tk)
) (3)

This is the probability distribution Xtk+1
, . . . , Xtn , in which x1, . . . , xk act as parameters. Take

the ti in chronological order, then the process is Markov if this conditional probability depends only
on the last value of the xk in the tk and does not depend on the previous values xi<k. This should
be done for all n, for any choice k, for any t1, . . . , tk and x1, . . . , xk. If as well as P1 and P2 we
can constructing all Pn. For example,

P3 (x1, t1;x2, t2;x3, t3) = P (x3, t3|x1, t1;x2, t2)P2 (x1, t1;x2, t2) =
= P (x3, t3|x2, t2)P (x2, t2|x1, t1)P1(x1, t1).

(4)

The function for the Markov process P (x2, t2|x1, t1) makes sense of the probability of moving
from one state to another. For non-Markov processes, distribution functions (3) are defined by a
completely different mathematical construct. In a one-dimensional space for responding to an op-
ponent’s dii, this is actually a symmetrical random wandering [9] with the probability of transition:

P (i, t+ 1|i′, t) = 1

2
δi,i′+1 +

1

2
δi,i′−1

Here t and x takes entire values i . But suppose that the application of a cyber weapon tends
to maintain the direction of movement: the probability of p in (1) to apply a cyber weapon, and q
in (2) to avoid. Then the Xt is no longer Markov, since the probability of Xt depends not only on
xt−1, but also on xt−2. This can be corrected by entering the two-component variable {Xt, Xt−1}.
This common variable again becomes Markov with the probability of transition:

P (i1, i2, t+ 1|i1′, i2′, t) = δi2,i1′ [pδi1−i2,i1′−i2′ + qδi1,i2′ ]

If we remember all the steps of our opponent’s elms, that is, when we had the opportunity to
apply cyber weapons (the process includes more previous steps), additional variables are needed.
However, this no longer works if the memory extends to all previous steps.

Take the Markov process, in which t is the time when Xt takes discrete values i = 0, 1, 2, . . ..
In equation (4), take t3 = t2 +∆t:

P3(i1, t1; i2, t2; i3, t2 +∆t)

P1(i1, t1)
= P (i3, t2 +∆t|i2, t2)P (i2, t2|i1, t1)

3
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Let’s sum i2 and take the threshold to get the basic equation:

Ṗ (i, t|i1, t1) =
∑
i′

Wi,i′P (i′, t|i1, t1)−Wi′,iP (i, t|i1, t1) (5)

where Wi,i′ are probabilities of transition per i unit of time and are properties belonging to the
physical system (for example, squares of matrix elements), while P refers to the state of the system.

Or the basic equation with memory [8],

Ṗ (i, t|i1, t1) =
∫ t

t1

dt′
∑
i′

Wi,i′ (t− t′)P (i′, t′|i1, t1)−Wi′,i (t− t′)P (i, t′|i1, t1), (6)

with the statement that it determines the mathematical model of handling the probability of a strike
and a possible contr-attack.

Let x also be continuous. Then the Wi,i′ takes the form of an integral core W (x | x′) . In our
case, the process is such that during an infinitesimal ∆t only infinitesimal jumps are possible, so
the nucleus is reduced to a differential operator. We will use an analogy that perfectly describes our
situation: the diffusion equation for the coordinate x of the Brownian particle [11]:

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2 (7)

The solution of this equation given with the initial condition P (x, t1) = δ(x − x1)) is will a
probability of transition P (x, t |x1, t1).

Consider one-dimensional diffusion in the potential field by the formula (7). Let it take place
in a finite environment xa < x < xc (Fig. 1). When we begin to apply cyber weapons at the inside
point of the xb, what are the chances that it will come out in xa or xc, respectively? That is, who
will be the first to react to attacker or defender, or given the situation

Figure 1: One-dimensional reaction in the attacker moment; Source: own
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The answer is obtained by solving (7) with the marginal absorption conditions: P (xa, t) = 0
and P (xc, t) = 0 .The solution can be obtained explicitly due to the fact that in the equation for
probabilities time is not included. It is clear that when the xb is at the top of the highest maximum
U(x) the probability of exit will be equal to fifty to fifty.

In our model, the coordinate is not Markov, and therefore it is not enough to know that x(t1) =
xb: you also need to know its previous history. For example, if you want to calculate the autocorre-
lation function x:

< x (t1)x (t2) >=

∫
x1x2P (x1, t1;x2, t2) dx1dx2 =∫

x1x2P (x1, t1)P (x2, t2|x1, t1) dx1dx2

You can also find the average time for any exit [9]. Obviously, to do this, you need to know
the correct initial distribution of the P1(x, t1)). Remarque. For the non-Markov process, the initial
value problem is not clearly defined unless additional information about the problem is provided.
In setting our problem is the question of going beyond the threshold, such as xa in (Fig. 2). How
long does it take to break the barrier?

Figure 2: Out of the Threshold; Source: own

In the case of diffusion described in (7), you can take the average time of the first arrival in xb–
and multiply by 2, because in xb the same probability of avoidance (the ability to hide) or return
and respond. The average time of the first passage can again be calculated analytically. However,
in larger dimensions, the question is: How long does it take to get out of the minimum xa? This
average time is determined by the lowest minimum on the curve.

The policy question is how to choose T to maximize the value of the cyber weapon. Because
rates are not under our control, our best policy is to wait until the rates are high enough to risk losing
the cyber weapon therefore of its limited reliability. This means our best policy can be expressed
in terms of x(t)- the Thresholds of rates that will cause us to use the cyber weapon.

The value to the owner of a cyber weapon to exploit a target’s vulnerability depends on its p
and q, and the distribution of future rates as specified in equations (6) or (7).
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We have an equation for the value of a cyber weapon for exploiting a target’s vulnerability, we
can evaluate what that weapon is worth. Even more useful is that we can calculate the best way to
use the weapon in terms of the optimal Threshold, specifying how large the rates have to be to make
it worthwhile to use the cyber weapon and take the added risk that it will no longer be available.

2 Application to Cyber incident

2.1 Cyber Espionage

Some country Army (called country R) has for years been deploying cyber weapons for espionage
against the defense and industrial targets, in country A. Their cyber espionage often has only mod-
erate Reliability against vigilant targets, so it is frequently discovered. It is able to continue because
many of the targets have not maintained state-of-the-art defenses for known vulnerabilities.

A result of widely detected industrial espionage was hostility against this country’s government.
Country officials acknowledge that all countries spy on each other, but they say country R is unique
in its theft of foreign technology. In terms of our model, one might well ask why the countries
R are deploying their weapon for cyber exploitation now when the rates are not particularly high,
rather than wait for a time when the rates are much higher? In other words, why might country R
be operating with a low Threshold? One possibility is that it might have thought that the resource
they were deploying had a low shelf life (low P). Another reason might be that country R expected
high q against at least some targets because it has taken outliers several years to even detect that
they have been compromised.

2.2 Country R Use of a High-Reliability, Low-Stability Cyber weapon.

In [13,14] and other sources to illustrate a situation in which the timing of the employment of a
resource does not seem optimal, consider the case of the Countries R halt of its rare-earth exports
pressure to provide strong economic pressure against J Country. The cyber incident started in, for
example, September 3010, when a country R fishing trawler collided with a J Countries patrol ship
near some disputed islands. On the next day and again on some days, the Country R demanded
that the captain and crew be released. The next day, J country released the crew but continued to
detain the captain. Tension continued to escalate, and after two weeks, Country R abruptly halted
its exports of rare-earth materials. Country R controlled 97 percent of piles of earth, and J Country
imported one-half of that supply, the effects on J country of the cutoff were immediate and drastic. J
country complained that this was economic warfare. Country R waited a month to restore exports to
most of the world, and before restoring exports to J country. After this demonstration of economic
coercion, J Country, the A country, and others invested in the production of rare earth outside of
Country R so as to never be subject to the same threat again. Clearly, Country R had the ability to
stop the global supply of minerals essential for manufacturing electronics and automobiles

In terms of our model, this ability had very high Reliability because until Counties R actually
stopped exports, other countries were happy to shut down their own production in favor of the
cheaper Countries R supply. Country R’s dominance could have persisted for years. When Country
R did use its coercive power, it tried to achieve some Reliability by never acknowledging that
the cut-off had any political purpose. However, the timing was so obviously connected to the J
country detention of the trawler captain that there was little doubt that bringing it to a halt was quite
deliberate. Additionally, once Countries R did deploy this ability to coerce by isolating exports of
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rare piles of earth, they lost their ability to coerce again in the same way because importing nations
awoke to the chance and took effective measures to finish their total dependence on Countries R
exports.

In terms of our model, Countries R’s ability to coerce others with a cut-off of rare-earth exports
would have had very low Reliability. The resource had high Reliability because Countries R’s
dominance had persisted for years already and would probably have persisted for several more
years had the cyber weapon for coercion not been used when it had been. A cyber weapon with
both low Reliability and high Stability features a very high optimal Threshold to be used. Our
model suggests that Countries R would have been happier had they’d the patience to attend to a
situation with much higher rates before deploying this particular low-Reliability and high-Stability
cyber weapon for economic coercion.

CONCLUSION

The cyber incident has already begun. The exploitation of vulnerabilities in computer systems has
been used for both espionage and sabotage. The exploitation of vulnerabilities has also led to new
ways of conducting crime and fighting crime; maintaining anonymity and destroying anonymity,
resisting political authority, and reinforcing political authority. Within the near future, the cyber
conflict will likely allow international sanctions to be more precisely targeted than economic sanc-
tions alone and can provide powerful force multipliers for so-called cyber warfare. This paper clar-
ified a number of the important considerations on optimal timing for such use. This type of study
can help users make better choices and help defenders better understand what they’re up against. In
some situations, one might want to mitigate the potential harm from a cyber incident, and in other
situations, one might want to harness the tools of cyber conflict. In some cases, one might want to
try both. In any case, a vital step is to know the logic inherent in this new domain. The implica-
tions of our model are easy to summarize: Reliability and Stability are both desirable properties of
a cyber weapon. However, they need opposite effects on the simplest time to use cyberweapons.
Persistence ends up in more patience, meaning the rates have to meet a better Threshold before
the resource is worth using. The rationale is that with high Reliability you are doing not have to
worry considerably about the resource becoming obsolete before you employ it. High Reliability,
however, promotes use even with relatively low stakes because the resource is probably going to be
reusable. Moreover, in an exceedingly world of exponential rates, the prospect of occasional very
high Gains increases the brink because those very high stakes are more worth expecting. Turning
the attitude around, it might be a slip-up to judge one’s own vulnerability by what one sees when
the rates are low or moderate. The potential attacker may be expecting an occurrence of sufficiently
high states to take advantage of the Cyber Weapon it already has.
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Abstract: Standard laboratory practice in technical fields of research and development is 
associated with the use of universal as well as specialized instrumentation. Current 
technologies allow some information and data acquisition procedures to be implemented on 
modern microcontrollers. These data collection technologies can be extended with other 
options such as digital processing of measurement data directly by a microcontroller, 
distributed data collection, in situ measurement or use in IoT technology. The contribution is 
devoted to an overview of the possibilities of implementing the basic methods of laboratory 
practice on a microcontroller chip by directly using standard measurement procedures as 
well as their specialized modifications using specific features of the technology. 
 
Keywords: measurement, microcontrollers, data processing, data acquisition 
 
 
INTRODUCTION 
 
A modern microcontroller (MCU) is a complex device that has a significant processing power 
of a processor core, which is usually based on ARM technology [1, 2], which in some models 
is supplemented by a mathematical coprocessor. A standard parts of the MCU are built-in 
programmable peripherals [3] for data transfer and communication with the superior system, 
typically an USART serial modem, on more powerful MCU models also LAN and recently 
modems supporting RF communication protocols are integrated too. For communication with 
external peripherals within the device, the microcontroller usually includes an elaborate GPIO 
pin management system as well as SPI, I2C and CAN serial communication interfaces. 
Analog signal processing is enabled by ADC converters with an analog multiplexer for 
channel selection with an option of resolution and sampling rate setting. For the analog 
signals generation some models contain one or several DAC converters. An important part of 
practically every microcontroller are timers designed for processing the time parameters of 
signals as well as for generating the time sequences. The clock frequency of the processor 
core, the properties of the internal circuits and peripherals of the microcontroller can be 
modified, changed, activated and deactivated over time, which makes it possible to effectively 
manage the energy consumption of the entire device. A typical feature of programmable 
peripherals is the possibility of configuring them in such a way that they can perform a 
significant part of the activities autonomously or with only minimal intervention of the 
processor core, which can perform other activities. 
 
The mentioned features of MCU, their internal structure and the implementation of various 
types of peripherals resulted from the primary application area of microcontrollers [4] which 
is the control of electronic devices of industrial as well as consumer electronics, automotive, 
robotics and communication systems. The peripherals of modern MCUs are designed as 
universal, so we can think about the possibilities of their use in laboratory practice for 
collecting and processing information and data. The terminology regarding MCU from the 
STM family of microcontrollers, including other designations and acronyms used in this 
contribution refer to the STM32L476 datasheet and manual [5, 6].The MCU core clock 
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frequency used has been 80 MHz. The presented circuit diagrams are only schematic, aimed 
to clarify the fundamentals of the presented procedures and do not replace their complete 
technical documentation. 
 
 
1  IMPLEMENTATION OF STANDARD MEASUREMENT METHODS USING MCU 
 
Many standard measurement methods and procedures can be implemented directly on 
microcontrollers by replicating known and proven procedures. The advantage of this approach 
is the possibility of simple verification the method functionality, it's parameters analysis and 
the results and their accuracy verification. 
 
1.1  Measurement of the signals time parameters 
 
As an example, the article shows the direct implementation of standard method of signals time 
parameters measurement (pulse repetition frequency and period), which is one of the basic 
tasks of laboratory practice. 
 
1.1.1  Events counting 
 
Counting various types of events, including e.g. the number of limit state crossings or the 
number of impulses, is encountered quite often in practice.The implementation of the event 
counter depends on several requirements, such as number of pulses per atime unit, the dead 
time (time during which the counter does not respond to the next pulse), the way of 
processing events (reaction to the beginning or the end of the event) and so on. 
For a simple counter registering random events with a low frequency, such as counting the 
flips of a rain gauge, counting pulses of a Geiger-Müller counter in environmental 
applications, etc., a simple counter with MCU interrupt generation with firmware support is 
sufficient (Fig. 1). The implementation uses the possibility of triggering an interrupt when the 
state of the microcontroller pin changes (in Fig. 1 pin PC13). The conditions for triggering an 
interrupt are set in the external interrupt control block (EXTI), in which the triggering of an 
interrupt on the rising, falling or both edges of the signal change can be set. 
 

 
 

Fig. 1. Events counting by triggering an interrupt by event on a microcontroller pin. 
 
 
The inherent dead time of an interrupt-implemented counter is approximately 500 ns. The 
signal on the input pin is assumed to have levels corresponding to binary logic levels 
(0 … 3.3V), but for some pins (in the documentation marked as FT) levels (0 … 5V) are also 
allowed.If different voltage levels from external signal sources occur, they need to be adjusted 
by means of suitable analog circuits. For example, in the case of long leads it may be 
necessary to protect the input from induced voltage with protective diodes. Alternatively, it 
may be required to detect pulses with a defined amplitude, in which case a comparator with 
level adjustment or a window detector has to be used.In the case of several counters collecting 
signals from several inputs, the priority of interrupts must be considered. 
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1.1.2  Frequency and period measurement 
 
Integrated programmable universal timers of the microcontroller [6] allow to design of 
complicated circuits for signal processing and generation. The usual method of measuring the 
period of a pulse signal is counting the pulses with a known frequency by a counter that is 
gated by the measured signal. 
There are usually several types of timers with different purposes and possibilities on a 
microcontroller chip. They are based on a GPT – General Purpose Timer, which provides a 
simple possibility of measuring the signal period without the intervention of the MCU core. 
When the signal edge arrives at the MCU input pin (TIMx_CH1), the timer generates signal 
to capture the counter value (this counter is marked as CNT counter).That edge is also used to 
generate the reset of the counter to zero value. The implementation of this measurement 
principle using GPT counter is shown in Fig. 2. The range of measured periods and the 
measurement resolution depends on the selection of the timer (CNT, 16/32 bit) and the 
frequency of the clock signal CK_CNT, which can be set in a wide range by pre-scalers. The 
accuracy of the measurement is determined by the stability of the oscillator from which the 
clock signal is derived. 
 

 
 

Fig. 2. Measuring the signal period using a universal timer counter. 
 
For accurate frequency measurement using input signal gating method, the chained timers 
concept can be used. The principle of this method is shown in Fig. 3 
 

 
 

Fig. 3. Frequency measurement using chained timers. 
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Two chained timers are used for the implementation. The 16-bit timer creates a gating signal, 
the 32-bit timer is frequency counter. The gating signal is created in the PWM mode of the 
timer where it is possible to choose the gating time and the time interval for the next 
measurement. The upper limit of the measured frequencies is limited by the MCU production 
technology and usually is the same as the processor clock frequency, in the discussed case 
80 MHz, with the stability of the used reference oscillator crystal usually in the order of 10-6. 
Since the configuration of the MCU peripherals is not static, but it is defined by program 
means, it is possible to change their configuration during the work of the MCU based on the 
measurement conditions. Therefore, it is possible, for example, to change the measurement of 
the period to the measurement of the frequency or vice versa, according to the required 
measurement accuracy. 
 
1.2  Processing of analog signals 
 
For analog signal processing, MCUs contain one or several analog to digital converters 
(ADC) [7], which are equipped with an input analog multiplexer.In principle, measurement of 
physical quantities using the MCU does not differ from standard procedures, when the input 
physical quantity is converted into a voltage. The voltage level represents an input that is 
subsequently amplified or weakened in a suitable way, and its bandwidth is adjusted by 
filtering in relation to the sampling frequency of the converter.Since the ADC converter is 
made up of a capacitive approximation register which also forms a sample & hold circuit, for 
measurement of faster signals it is necessary at the input of the ADC converter connect a low 
output impedance voltage follower. This follower also limits the input voltage range of the 
converter to the range (0 … 3.3V). 
In some MCU types, the analog subsystem also includes digital-to-analog converters (DAC) 
[8] with relatively high output impedance, usually equipped with optional output amplifiers, 
but these do not cover the entire dynamic range of the converter for technological reasons. To 
use the full dynamic range of the DAC, it is suitable to use external rail-to-rail operational 
amplifiers. 
 
 
2  OPTIMIZATION OF MEASUREMENT METHODS FOR MCU 
 
The potential of MCU is not limited to replication of standard measurement procedures. With 
the help of specific MCU properties, it is also possible to implement measurement procedures 
optimized for use with the specific features of MCU peripherals. 
 
2.1  Capacitance measurement using MCU 
 
The capacitance measurement of the capacitor is among the standard procedures of laboratory 
practice when evaluating the dielectric properties of substances. The elementary procedure for 
measuring capacity is a principle based on measuring the time period after which the 
measured capacitor is charged or discharged to the selected predefined reference value from 
the defined initial value. The standard measurement procedure consists of measuring this 
duration and then charging or discharging the capacitor to the initial value. This time 
perioddepends on the capacity of the capacitor and inefficiently extends the measurement 
cycle. 
To cut down on measurement time and enhance measurement evaluation, the charging and 
discharging times may be adjusted to restrict to active measurement times. This is enabled by 
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fundamental properties of the linear RC circuit, by which the charging and discharging times 
are the same if the measurement is starting from zero or maximum voltage values on the 
capacitor and the voltage on the capacitor is measured after reaching the reference value, 
which is half of the maximum voltage value [9]. 
 

 
 

Fig. 4. Principle of capacity measurement. 
 
The reference value is derived from the maximum voltage value to which the measured 
capacitor can be charged, thereby eliminating the influence of supply voltage fluctuations on 
the measurement accuracy. The principle of measurement is shown in Fig. 4. 
At the beginning of the measurement cycle, the measured capacitor is assumed to be 
discharged and all switches are turned off. When the switch S1 is turned on, the capacitor is 
charged through the resistor Rp, and after reaching the value of the voltage Vdd/2 on the 
capacitor, the measurement of the charging time ends. After turning the switch S1 off and 
turning the switch S3 on for a predefined time TS3, the capacitor is charged to the maximum 
voltage value Vdd. After turning the switch S3 off and turning the switch S2 on, the capacitor 
begins to discharge through the resistance Rp to the final voltage value Vdd/2. When this 
voltage value is reached, the measurement of the discharge time ends. Next, when the switch 
S2 is turned off and the switch S4 is turned on for a predefined time TS4, the capacitor is 
completely discharged. Next the switch S4 is turned off and the measurement continues with 
the next measurement cycle. 
 
The waveform of the voltage on the measured capacitor at point A in Fig. 4 with the described 
order of switching is shown in Fig. 5. 
 

 
 

Fig. 5. Voltage waveform at point A in Fig. 4. (Vcc is Vdd) 
 
The total measurement time of one measurement cycle is determined using the following 
equation: 

T = 2 Rp Cx ln(2) + TS3 + TS4 
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The implementation of the aforementioned measurement principle is shown in Fig. 6. 
Switches S1 – S4 are formed by driver output transistors of MCU ports, which are configured 
as output pins in digital mode. The output of the comparator, which is part of the MCU 
peripherals, controls the measurement of the measurement cycle period using the 32-bit timer 
TIM2. The RCC clock frequency of the timer counter is 80 MHz. 
Controlling the measurement requires only minimal processor intervention. Within the 
interrupt handler routine, which is triggered by the comparator, the states of the individual 
switches are cyclically set, and the values of the timer counter are recorded. The configurable 
analog comparator is a part of the MCU peripherals, and the entire circuit requires only one 
external component – resistor Rp and uses 4 MCU pins. 
 

 
 

Fig. 6. Implementation of capacity measurement. 
 
The maximum measured value of the capacity is limited by the current carrying capacity of 
the port pins when charging and discharging the measured capacitor, which can also be 
polarized. The calibration of the measurement is in one-shot, the stray and mounting 
capacitances Cs are determined by measuring without the connected calibration capacitor.This 
capacity is subtracted from the value of the measured capacity during corrections. 
 
By using a 32-bit timer counter, the range of measured capacity values without the 
modification of parameters and circuit configuration is in the range of several orders of 
magnitude, in the realized version from 0.1 pF to 220 nF (Fig. 7). 
 
 
2.2  Analog signals generation 
 
The generation of signals with defined waveform, generation of harmonic signals with fixed 
or variable phase, the synchronization of parts of the measurement chain to the selected part 
of the generated waveform are tasks that frequently occur in the creation of complex 
measurement methods. 
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Fig. 7. Calibration curve with and without stray capacitance correction, the capacitance 
measurement is for Rp = 330 kΩ, the calibration capacitors values were measured using a GW 

Instek LCR 6020 reference bridge. 
 
 
To generate the analog periodic signals with a constant frequency in the order of kHz, it is 
possible to use a pulse-width (PWM) modulator as a DAC converter, which is a standard part 
of microcontroller timers. The principle of operation of such DAC is based on the generation 
of pulses with variable width (PWM) [10], where the mean value of the generated sequence of 
pulses corresponds to the required voltage value of the generated waveform. An analog value 
is obtained from the generated sequence of pulses using an external RC low-pass filter, which 
is connected at the PWM output. An analog signal is obtained by changing the pulse width 
value at regular intervals according to the values stored in the microcontroller memory. 
The mentioned concept has benefit in that the output voltage of the converter is in the range of 
the amplitude of the generated pulses, which is usually the range of the supply voltages of the 
microcontroller. On the other hand, the need to generate PWM pulses with a frequency in 
multiples of the frequency of the generated signal and the need to use an output filter limits 
the use of such a DAC to generate the slower periodic signals only. On the STM32 platform, 
it is possible to implement the signal generator concept with the use of PWM DAC through 
the timer and DMA transfer, so that it is not necessary to use any additional CPU intervention 
except for setting the basic parameters during initialization. 

52



 
 

 

Fig. 8.Signal generator using a timer in PWM mode. 

A simplified configuration of the DAC using PWM is shown in Fig. 8. The ARR register 
determines the resolution of the converter and together with the clock signal pre-scaler for the 
counter determine the repetition frequency of the PWM pulses. The pulse width at the timer 
output is determined by the value stored in the Compare register CC3. This value is modified 
by the DMA controller with the value from the table of values, which is stored in the MCU 
memory. The DMA transfer works in cyclic mode. After setting the last value from the table, 
the first value from the table is set in the next step. 

If it is necessary to synchronize other parts of the system with the generated signal, the DMA 
controller enables the generation of an interruption after the transfer of half of the data block 
as well as at the end of its transfer. The signal waveform generated by the described method is 
shown in Fig. 9. 

 

Fig. 9. Example of signal waveform generated by the timer in PWM mode. 

 
CONCLUSION 
 
The contribution in the overview describes the possibilities of applying modern MCU in 
laboratory practice in the field of research and development. Selected examples demonstrate 
the possibilities of simple implementation of standard measurement procedures as well as the 
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realization of specialized measurement procedures using features of the MCU. With the 
appropriate use of the software and the integrated MCU peripherals, it is possible to achieve 
results comparable to standard measuring instruments, while at the same time the entire 
device can be miniaturized. 
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Abstract: In this paper, we show that the quasi-densities of subsets of the set of natural 
numbers ��(�) are not an upper density. We will show several properties of this density and 

the conditions that the sequence (��) must satisfy for the quasi-density ��(�) to exist and be 

finite. The relationship between asymptotic density and quasi-density of set A is described. 
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INTRODUCTION 
 

Let � be a subset of the set of natural numbers. The density of this set is a number that 

shows how densely are the elements of the set � distributed in the set of natural 
numbers [1,5,9]. Using densities, we can define the generalized convergence of 
sequences of real numbers.  The most well-known of these densities is the asymptotic 
(natural) density, using which we define statistical convergence. In paper [8] the 
authors define generalization of statistical convergence – quasi-statistic convergence. 
This paper is focused on the properties of the quasi-density by which this convergence 
is defined. It also shows how quasi-density differs from the most well-known densities 
such as a asymptotic density and a logarithmic density. 

 
 
 
1 THE UPPER DENSITY  
 
In paper [4] the authors defined the term upper density. 
Let �(�) be a set of all subsets of �. A function �: �(�) → � is called the upper density on 
the set �, if for every set �, � ⊆ � and positive integer constants � and ℎ, the following holds 
true: 
(V1) �(�) = 1 
(V2) �(�) ≤ �(�) for � ⊆ � 
(V3) �(� ∪ �) ≤ �(�) + �(�) 

(V4) �(� ∙ �) =
�

�
�(�), where � ∙ � ≔ {��: � ∈ �} 

(V5) �(� + ℎ) = �(�), where � + ℎ ≔ {� + ℎ: � ∈ �}. 
 
From (V1) and (V2) we get 
(V1*) �(�) ≤ 1 for all � ⊆ �, 
Combining (V4) and (V5) results in  

(V4*) �(� ∙ � + ℎ) =
�

�
�(�) for every � ⊆ � and �, ℎ ∈ ��. 
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These criteria are satisfied by all commonly used densities. The most well-known of these are 
[2,4,7]: 
 
 

1. Asymptotic density 

Let � ⊆ �. We define �(�) = |� ∈ �, � ≤ �| as the number of elements of a set � smaller 
than �. The upper and lower asymptotic densities of the set � ⊆ � are 
 

�(�) = lim sup
�→�

�(�)

�
= lim sup

�→�

|� ⋂{1,2, … , �}|

�
 

 

�(�) = lim inf
�→�

�(�)

�
= lim inf

�→�

|� ⋂{1,2, … , �}|

�
. 

If �(�) = �(�), then there exists an lim 
�→�

�(�)

�
= �(�)  that is called the asymptotic density of 

the set �. It is evident that if for some set � there exists a �(�), then 0 ≤ �(�) ≤ 1. 
While for every set there exists both an upper and a lower asymptotic density, the asymptotic 
density of the set � does not necessarily exist. 
 

1. Logarithmic density 

The upper and lower logarithmic densities are 

ℓ(�) = lim sup
�→�

∑
1
��

��∈�,���� 

ln �
 

 

ℓ(�) = lim inf
�→�

∑
1
��

��∈�,���� 

ln �
. 

If ℓ(�) = ℓ(�), then there exists an  ℓ(�) = lim
�→�

∑
�

��
��∈�,���� 

�� �
  that is called the logarithmic 

density of the set �. 
Between the lower and upper asymptotic and logarithmic densities � ⊆ � there are the 
following relations: 

0 ≤ �(�) ≤ ℓ(�) ≤ ℓ(�) ≤ �(�) ≤ 1. 
 

3. Schnirelmann density 

It is defined (in contrast to the preceding two densities) for every set � ⊆ �. The 
Schnirelmann density for the set � is 

�(�) = inf
���

�(�)

�
= inf

���

|� ⋂{1,2, … , �}|

�
. 

This density is „sensetive“ to changes that we make at the beginning of a set.  

E.g. if 1 ∉ �, then �(�) = 0, if 2 ∉ �, then �(�) =
�

�
 [2]. For every set � ⊆ � the following 

applies 
0 ≤ �(�) ≤ �(�) ≤ 1. 

In literature, we can find other densities (Dirichlet, Banach, exponential, …) 
Using densities we can define different types of convergences of the sequences. 
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We say that � = (��) statistically converges to the number � ∈ �, if ∀� > 0: �(��) = 0, 
where  �(��) = {���: |�� − �| ≥ �}. 
Many authors have generalized this convergence by replacing the statistical density with a 
different type of density [2,3,5]. In the next chapter, we will focus on a density by the use of 
which one of the generalizations was defined. 
 
 
2 QUASI-DENSITIES OF SUBSETS OF THE SET OF NATURAL NUMBERS 
 
 
In [8] the authors defined: 
Let � = (��) be a sequence of positive real numbers with the properties: 
i) lim

�→�
�� = +∞ 

ii) lim sup
�→�

��

�
< +∞ 

We say that the sequence  � = (��) quasi-statistically converges  to the number � ∈ � 

(stq
�

− lim �� = � ), if  ∀� > 0: ��(��) = lim
�→�

�

��
|{����, � ≤ �}| = 0,  

where �� = {���, |�� − �| ≥ �}. 
 

In case we choose the sequence � = (��) to be a sequence of all natural numbers, we get a 
statistical convergence. 
 
Definition: Let � = (��) be a sequence of positive real numbers that satisfies the following 
properties: 

i) lim
�→�

�� = +∞ 

ii) lim sup
�→�

��

�
< +∞. 

We will call such a sequence permissible. 
 
Sequences that satisfy these properties are for example: 
1. (��) = (log �)���

� ,  
2. (��) = (� ∙ � + �)���

� , � ∈ ��, � ∈ �, 
3. (��) = (��)���

� , � ∈ (0,1). 
 
We will use this sequence to define the density. 
 
Definition: Let � = (��) be a permissible sequence. The lower quasi-density of the set 
 � ⊆ � is  

��(�) = lim sup
�→�

�(�)

��
. 

The upper quasi-density of the set � ⊆ � is 

��(�) = lim inf
�→�

�(�)

��
. 

In case the upper and lower quasi-densities of the set � are equal, there exists a quasi-density 

of the set � and we denote it as ��(�) = ��(�) = ��(�) and 
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��(�) = lim
�→�

�(�)

��
. 

 
Note: If we choose (��) = (�)���

� , we get an asymptotic density. 
 
The basic properties of density ��(�) are described in paper [6]. We will show that this 

density does not satisfy all the criteria for an upper density. 
 
Theorem 1. Let  � ⊆ � be a finite set. Then ��(�) = 0 for every permissible sequence 

 � = (��). 

Proof: If A is a finite set, then  ��(�) = lim
�→�

�

��
|{���, � ≤ �}| ≤ lim

�→�

|�|

��
= 0. 

 
Theorem 2. Let �, � ⊆ � be non-empty sets which their quasi-densities ��(�) and ��(�). 

Let ��: �(�) → ⟨0, ∞) be a function. Then  

i) If � ⊆ �, then ��(�) ≤ ��(�) 

ii) ��(� ⋃ �) ≤ ��(�) + ��(�) 

iii) If A ∩ B = ∅, then d�(A ∪ B) = d�(A) + d�(B). 

Proof: i) Let � ⊆ �. Then for every � ∈ �  the following holds true 
|{���, � ≤ �}| ≤ |{���, � ≤ �}|. 

Thus 
�

��
|{���, � ≤ �}| ≤

�

��
|{���, � ≤ �}|.  

We get lim
�→�

�

��
|{���, � ≤ �}|  ≤ lim

�→�

�

��
|{���, � ≤ �}|, i.e. ��(�) ≤ ��(�). 

ii) It is evident that |{��� ⋃ � , � ≤ �}| ≤ |{���, � ≤ �}| + |{���, � ≤ �}|. 
From that we get 

��(�⋃�) = lim inf
�→�

1

��

|{��(�⋃�), � ≤ �}| ≤ lim sup
�→�

1

��

|{��(�⋃�), � ≤ �}| ≤ 

≤ lim sup
�→�

1

��

(|{���, � ≤ �}| + |{���, � ≤ �}|) ≤ 

≤ lim sup
�→�

1

��

|{���, � ≤ �}| + lim sup
�→�

1

��

|{���, � ≤ �}| = 

��(�) + ��(�) = ��(�) + ��(�). 

iii) If � ∩ � = ∅ then |{��� ⋃ � , � ≤ �}| = |{���, � ≤ �}| + |{���, � ≤ �}|. 

��(�⋃�) ≤ ��(�) + ��(�) = lim inf
�→�

1

��

|{���, � ≤ �}| + lim inf
�→�

1

��

|{���, � ≤ �}| ≤ 

≤ lim inf
�→�

�

��
|{��(�⋃�), � ≤ �}| = ��(�⋃�) ≤ ��(�⋃�). 

. 
It follows from that 

��(�⋃�) = ��(�) + ��(�). 

 
Quasi-density does not satisfy the criterion (V1). The quasi-density of the set of all natural 
numbers � is dependent on the sequence (��), and does not necessarily exist for some 
permissible sequences. 
 

Example 1. Let sequence � = (��) = �√��
���

�
. This sequence is permissible.  

In regards to this sequence the quasi-density of set � = {1,2, … } is 
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��(�) = lim
�→�

|� ⋂{1,2, … , �}|

��
= lim

�→�

�

√�
= ∞. 

 
Example 2. We define the sequence  � = (��): 

�� = �
2�,       � = 2�       

  
�

2
,         � = 2� + 1

  � = 1,2, … 

This sequence is sequence permissible. The quasi-density of set � = {1, 2, … } given the 
sequence � is 

��(�) = lim
�→�

|� ⋂{�,�,…,�}|

��
= lim

�→�

�

��
. 

Quasi-density of set � given by the sequence �  does not exist, because 

lim
�→�

��

���
= lim

�→�

��

��
=

�

�
, 

 

lim
�→�

����

�����
= lim

�→�

����
����

�

= 2. 

 
For the quasi-density of set � the following theorem holds true: 
 
Theorem 3. Let (��) be a permissible sequence. Then 

i) If lim sup
�→�

��

�
= � ≠ 0, then   ��(�) =

�

�
 (if lim sup

�→�

��

�
= 1, then   ��(�) = 1). 

ii) If lim sup
�→�

��

�
= 0, then ��(�) = ∞. 

Proof: 

i) ��(�) = lim sup
�→�

|� ⋂{�,�,…,�}|

��
= lim sup

�→�

�

��
=

�

��� ���
�→�

��
�

=
�

�
. 

ii) ��(�) = lim sup
�→�

|� ⋂{�,�,…,�}|

��
= lim sup

�→�

�

��
=

�

��� ���
�→�

��
�

= ∞. 

 

Note: Let � = (��) be a permissible sequence and exists a finite lim 
�→�

��

�
. 

i) In the case of lim 
�→�

��

�
= � ≠ 0, then   ��(�) =

�

�
. 

ii) In the case of lim 
�→�

��

�
= 0, then   ��(�) = ∞. 

iii) In the case of lim 
�→�

��

�
= 1, then   ��(�) = 1. 

 

The quasi-density does not satisfy the criterion (V1*). For any � ⊆ � the following holds: 
0 ≤ ��(�) ≤ +∞, 

0 ≤ ��(�) ≤ +∞, i.e. the quasi-density can be a value greater than 1. 

 
Theorem 4. Let the following hold true for sequences � = (��) 

0 < lim inf 
�→�

��

�
≤ lim sup

�→�

��

�
= � < ∞. 

Then for any sequence � ⊆ � 

0 ≤ ��(�) ≤ ��(�) ≤
�

�
  

 holds true. 
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Proof: 0 ≤ ��(�) = lim inf
�→�

|�∈�,���|

��
= lim inf

�→�

�

��
∙

|�∈�,���|

�
≤ lim sup

�→�

�

��
∙

|�∈�,���|

�
= 

= lim sup
�→�

|�∈�,���|

��
= ��(�). 

In addition to that ��(�) = lim sup
�→�

�

��
∙

|�∈�,���|

�
≤

�

�
∙ �(�)  ≤

�

�
. 

It is sufficient to realize that for every set � ⊆ � there exists a �(�) and �(�) (an asymptotic 

density �(�) does not have to exist). 
 
Theorem 5. Let � ⊆ � be such a set, for which its asymptotic density is �(�) = �, where 

��〈0,1〉. Let there exists a non-zero lim
�→�

��

�
= �. Then there also exists a quasi-density of set 

� and ��(�) =
�

�
∙ � holds true. 

Proof: When we use the definition of quasi-density we get the following 

��(�) = lim
�→�

�

��
|{���, � ≤ �}| = lim

�→�

�

��
∙

�

�
|{���, � ≤ �}| =

�

�
∙ �. 

 
Corollary. Let � = (��) be any arithmetic sequence of the type  �� = � ∙ � + �, 
 � = 1,2, … , ����, ���. 
Let � ⊆ � be such a set, that its asymptotic density �(�) = �.  

Then ��(�) =
�

�
. 

 
If the condition in the theorem is not satisfied, then the asymptotic density and quasi-density 
of a given set, even if they both exist, do not have to be the same. 
 

 
Example 3. Let �� = log � , � = 2,3, …. It is evident that a sequence (��) defined as such is 

permissible, as lim
�→�

log � = ∞ and lim
�→�

��� �

�
= 0.  

Let us consider the sets  � = {1�, 2�, … } and � = � = {1,2, … } . 
The asymptotic densities of these sets are �(�) = 0 and �(�) = 1. 
The quasi-density of these sets in regards to the previously defined sequence (��) exists and 
is the same for both:  ��(�) = ∞ a ��(�) = ∞. 

 
Theorem 6.  For every non-negative real number � there exists such a set � ⊆ � and a 
permissible sequence � = (��), that ��(�) = �. 

Proof: If � = 0, then we can choose � to be any finite set (theorem1).). 
Let � ∈ (0, ∞), and let us choose any � ∈ (0, 1⟩. 

For these chosen immutable numbers, we define a sequence � = (��) = �
�

�
∙ ��

���

�

. This 

sequence is permissible, because 

lim
�→�

�� = lim
�→�

�

�
∙ � = +∞ and  lim sup

�→�

��

�
= lim

�→�

�

�
∙�

�
=

�

�
< +∞. 

For every � ∈ 〈0,1〉 the exists such a set � ⊆ �, for which its asymptotic density is  
�(�) = �. 
Let � be such a subset of natural numbers, such that its asymptotic density is � and 

(��) = �
�

�
∙ ��

���

�

. Then 

��(�) = lim
�→�

�

��
|{���, � ≤ �}| = lim

�→�

�

�∙�
|{���, � ≤ �}| =

�

�
lim

�→�

|{���,���}|

�
=

�

�
� = �. 
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CONCLUSION 
 
In this paper, we have shown that the quasi-density of subsets of the set of natural numbers 
has only some of the properties of an upper density. The density of the set of all natural 
numbers is always equal to 1. In this paper there were examples showing that the quasi-
density of the set of all natural numbers ��(�)  does not necessarily have to exist. If it does 

exist, it can have a value greater than 1(e.g., it can be ��(�) = ∞). Under certain conditions 

(see Theorem 5) a quasi-density can be described using an asymptotic density. However, this 
does not hold true in general. Even if a quasi-density defines a certain type of generalized 
convergence (a quasi-statistical convergence), the paper has shown that its properties are 
different than other densities that were used so far. 
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cond order linear partial differential equation. It enable us to accelerate the parallel algorithm
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INTRODUCTION

Finite difference algorithms are one of the traditional numerical methods commonly used to solve
differential equations. Such algorithms are exploited both for ordinary and partial differential equa-
tions (abbreviated to PDEs). The main idea behind the finite difference method is based on the
approximation of values at certain grid points which are derived from a spatial domain of a given
continuous function. Such a principle is referred to as discretization [6].

All numerical methods are usually tailored with respect to computer-aided feasibility and the fi-
nite difference method is no exception. Requirements on computer resources needed for numerical
methods are often very high, however. Due to this fact, the usage of parallel (or high-performance)
computers for such tasks is highly desirable. Roughly, parallelization schemes usually rely on
partitioning the computational problem in question into minor subproblems. In such a way, each
processor is responsible for processing a corresponding subproblem. Comparing to sequential al-
gorithms, exploitation of the above idea often leads to speedup of computation. Indeed, the design
of suitable parallel algorithms requires a nontrivial knowledge and skills [7].

In this paper, we describe a method for speed up of traditional parallel schemes for certain type
of partial differential equations solved by finite-difference method. Such a method is based on the
combination of linear algebra and graph coloring. It is explained on an example of a certain type
of second order partial differential equation and its discretization. In our example, the described
method enables to reduce the number of phases in corresponding parallel algorithm from 4 to 2. It
may lead to considerable acceleration of a computation compared to the original algorithm.

The organization of the paper is as follows. Section 1 contains definitions of necessary notions,
basic notations and a description of useful principles and methods. The bulk of this paper, namely
Section 2, is devoted to the proof of our main result. Our contribution is summarized in Conclusion.

1
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1 PRELIMINARIES AND THE PROBLEM STATEMENT

1.1 Graphs, Coloring and Stencils

Standard graph-theoretic notions are mentioned here without definitions. We address [2, 3] for
further definitions and results regarding the graphs and coloring, respectively. Nevertheless, we
will mention some useful abbreviations here. Namely, for a positive integers m,n, let Kn denote
an n-vertex complete graph and let Km,n denote a complete bipartite graph with two partitions of
cardinality m and n, respectively.

A vertex coloring of graphs is introduced more precisely. Let G = (V,E) be a simple undirected
graph, consisting of a set of vertices V and a set of edges E. Let t be a positive integer and let
C = {c1, c2, . . . , ct} be a set of colors. A function f : V (G) → C is said to be a legal vertex
coloring of G if f(u) ̸= f(v) for each edge {u, v} ∈ E(G). Clearly, each legal vertex coloring
of G is assigning different colors to each adjacent vertices. Instead of the ”legal vertex coloring”
we will refer only ”legal coloring”, as we deal with no other kinds of colorings. A graph is said to
be t-colorable if it can be legally colored with at most t different colors. The chromatic number of
G, abbreviated to as χ(G), is the minimum t such that G is t-colorable. If a clique Ki (i ≥ 2) is a
subgraph of G, then χ(G) ≥ i.

Let us explain the notion of ”dependency graph” in the following part. Given a set of objects S and
a transitive relation R ⊆ S × S, the dependency graph is a directed graph G = (S, T ) with T ⊆ R
the transitive reduction of R [1]. More precisely, let P be a standard procedural programming
language with an assignment operator denoted by ”=” and with variables x1, x2, . . . ; let S be a set
of such variables. If φ denotes an expression, syntactically correct in P , with d variables (d is an
positive integer) such that:

xk = φ(x1, . . . , xd);

then (xk, xi) ∈ R iff xi occurs in φ for i = 1, . . . , d. It means that relation the (xk, xi) represents a
dependency ”xk dependns on xj” for every expression φ occurring in a given program written in
P . Each relation (xk, xi) is represented by the directed edge (or arc) xk ← xi in a corresponding
dependency graph G.

To avoid conflicts, dependency graphs are used as standard tools in concurrency theory [1]. Com-
monly used alternatives to dependency graphs in numerical analysis are ”stencils” [4], [7]. How-
ever, unlike dependency graphs, stencils are undirected. More precisely, the stencil is a set of
points (i.e. vertices, nodes) used for computing a finite difference by an assignment statement
”y = φ(. . . );” around a point y. A construction of stencils is similar to the dependency graphs, but
all arcs in a given dependency graph must be undirected and, if necessary, all multiple occurrences
of the same edge will be deleted.

1.2 A Discretiation Principle and Its Parallelization

Let us consider the partial differential equation (shortly PDE) in the form

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂x∂y
+

∂2u(x, y)

∂y2
= g(x, y) , (1)

2
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where g is a function of independent variables x, y and u is a function (or dependent variable). Eq.
(1) is frequently written in the equivalent form

uxx + uxy + uyy = g(x, y). (2)

Note that it is an elliptic PDE, since A = B = C = 1 and B2 − 4AC = −3 < 0. In order to get
a numerical solution of eq. (1), we will use a finite difference method. By Taylor polynomial for
functions of two variables, we get [6]:

uxx + uxy + uyy =
1

2h2
[ u(x+ h, y + h) + u(x− h, y − h) +

+ u(x+ h, y) + u(x− h, y) + u(x, y + h) + u(x, y − h)− 6u(x, y) ] +O(h2)

This approximation leads to the discretization within 2-dimensional grid n× n (see Fig. 1), where
ui,j stands for u(x, y), ui+1,j stands for u(x + h, y), ui,j−1 stands for u(x − h, y), etc. We address
[4], for advanced issues of elliptic PDEs discretization.

Fig. 1. Arrangement and labeling of a grid for numerical computation of the PDE (1).
Source: own

By a straightforward calculation, it follows:

ui,j(t+1) =
1

6

[
ui+1,j+1(t) + ui−1,j−1(t) + ui+1,j(t) + ui−1,j(t) + ui,j+1(t) + ui,j−1(t)−

2gi,j
n2

]
,

where h = 1/n and t is an order of iteration during the algorithm computation. The above assign-
ment statement leads to the 7-point stencil, see Fig. 2. The same stencil is also used for another
factorizations described in [4], p. 1830. Alternatively, more accurate formula is suggested in [7]
which leads to the 9-point stencil (called also 2D compact stencil), see Fig. 2.
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Fig. 2. The 7-point stencil (left) and the 9-point stencil (right). The stencils are isomorphic to two
complete bipartite graphs, i.e. K1,6 (left) and K1,8 (right). [Source: own]

Stencils form patterns which repeatedly occur in the entire grid. Due to correct computation of
each value ui,j , the computation should proceed in phases. The values that can be computed simul-
taneously (within the same phase) must not be connected by an edge (in the same stencil). All such
values must be ”far enough” apart. That can be ensured by a legal vertex coloring of all points in
the entire grid. An example of a legal vertex coloring with 4 colors for a grid with occurrence of
9-point stencils is shown in Fig. 3. Such a coloring is optimal (i.e. the chromatic number of the grid
is χ = 4) because the grid contains cliques K4. (On the other hand, if a grid is formed by 7-point
stencils, then its chromatic number is 3; corresponding figure is omitted.)

Fig. 3. The grid formed by 9-point compact stencil with chromatic number 4.
Source: own

The parallelization of the described numerical algorithm heavily rely on the legal coloring. Each
phase corresponds to a single color. It means that the computation for each point with the same
color can be realized in parallel. On the other hand, the use of different colors ensures to avoid
collisions during computation. Such an idea leads to the Algorithm 1 with k phases. Clearly, the
number of phases corresponds to the chromatic number of the corresponding grid. Of course, the
number of phases affects the time complexity of the described algorithm. Moreover, in each phase
only approximately (1/k)th of nodes is active while others are idle. (The details on how processors
can be mapped into nodes are not discussed in this paper.) It is naturally advantageous to achieve
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the smaller number of phases. In this regard, it is desirable to minimize the number of points (or
simplify their layout) in a corresponding stencil. This is exactly the principal goal of our paper.
Our solution is presented in the next section.

Algorithm 1 The parallel algorithm with k phases
repeat

Phase 1: for all grid points with color 1 do in parallel compute update;
· · ·
Phase k: for all grid points with color k do in parallel compute update;

until the accuracy of the solution is not sufficient

2 THE MAIN RESULT

The main result of this paper is formulated in the following statement.

Theorem 1 There exists a finite-difference equation which solves the PDE (1) numerically. Such
an equation leads to the 5-point stencil and the corresponding parallel algorithm uses 2 phases.

Proof. Let us use the general form of the Taylor series of a two-variable function u at a point (x, y):

u(x+ ϵ, y + δ) =
∞∑
k=0

{
1

k!

k∑
i=0

(
k

i

)
∂ku(x, y)

∂xk−i ∂yi
· ϵk−iδi

}
. (3)

In the rest of this paper, all partial derivatives are written in compact forms, namely, the first-order
partial derivatives are denoted by ux and uy, respectively, the second-order partial derivatives are
denoted by uxx, uyy, uxy, etc. By setting ±h for both ϵ and δ, 4 instances are derived from the
Taylor series (3). The first one (the setting ϵ = δ = h is chosen) is written in the form:

u(x+ h, y + h) = u(x, y) + (ux + uy)h+

(
1

2
uxx + uxy +

1

2
uyy

)
h2+

+

(
1

6
uxxx +

1

2
uxxy +

1

2
uxyy +

1

6
uyyy

)
h3 +O(h4)

All four instances of eq. (3) differ only in signs of their right-hand side summands. The details are
listed schematically in Tab. 1. In order to get a finite-difference formula solving eq. (1), we will use
only the 5-point stencil with quantities ui,j, ui+1,j+1, ui−1,j+1, ui+1,j−1, ui−1,j−1, respectively. Such
a formula will be derived by approximation of functions u(x + h, y + h), u(x − h, y + h), u(x +
h, y − h), u(x − h, y − h), respectively. To do so, it is desirable to find such integer weights wi

(for i = 1, . . . , 4), that the linear combination of u(x + h, y + h), . . . , u(x − h, y − h) should be
proportional to the left-hand side of eq. (1).
More precisely,

w1 · u(x+ h, y + h) + · · ·+ w4 · u(x− h, y − h) = τ · h2 (uxx + uxy + uyy) , (4)

for a suitable integer τ . Finding of suitable weights w1, . . . , w4 can be handled by Tab. 1. Note that
weighted sum of each column (except the second one) should yield either 0 or τ . More precisely,
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Table 1: Signs of particular summands in 4 instances which were derived from eq. (3). Due to
shortening, symbol u stands for u(x, y) on the top of the 2nd column.

u(·, ·) u ux uy
1
2
uxx uxy

1
2
uyy

1
6
uxxx

1
2
uxxy

1
2
uxyy

1
6
uyyy weight

u(x+ h, y + h) + + + + + + + + + + w1

u(x− h, y + h) + − + + − + − + − + w2

u(x+ h, y − h) + + − + − + + − + − w3

u(x− h, y − h) + − − + + + − − − − w4

sums of all columns for 1
2
uxx, uxy,

1
2
uyy have to be τ . All other sums (except the column regarding

u) should be 0. Columns in which the the occurrence of signs is the same are omitted. It follows
that columns which regards ux,

1
6
uxxx and 1

2
uxyy, respectively, lead to the equation

w1 − w2 + w3 − w4 = 0 .

By the similar argument, the following equation is derived with respect to the columns regarding
uy, 1

2
uxxy and 1

6
uyyy, respectively,

w1 + w2 − w3 − w4 = 0 .

Clearly, both uxx and uyy occur τ times in eq. (4). Therefore both corresponding columns lead to
the equation

1

2
(w1 + w2 + w3 + w4) = τ .

Finally, the following equation is derived by taking into account the column regarding uxy

w1 − w2 − w3 + w4 = τ .

All four equations above are listed in a matrix form. Construction of the corresponding matrix is
shown in Fig. 4.
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Fig. 4. Construction of the 4-row matrix from Tab. 1.
Source: own

By straightforward matrix row operations, we get
1 −1 1 −1 0
1 1 −1 −1 0
1 1 1 1 2τ
1 −1 −1 1 τ

 ∼


1 −1 1 −1 0
0 1 −1 0 0
0 0 1 1 τ
0 0 0 4 3τ

 .

Moreover, it holds that w1 = w4 and w2 = w3 and thus, the solution is

w1 = w4 =
3τ

4
,

w2 = w3 =
τ

4
.

In order to obtain the smallest positive integer solution, we choose τ = 4 and therefore w1 =
w4 = 3 and w2 = w3 = 1. By knowing all weights, the resulting approximation is written in the
following form:

3u(x+ h, y + h) + u(x− h, y + h) + u(x+ h, y − h) + 3u(x− h, y − h) =

= 4u(x, y) + 4h2 (uxx + uxy + uyy) +O(h4) . (5)

By transformation into finite differences and by substitution h = n−1, we get

ui,j(t+ 1) =
1

4
[ 3ui+1,j+1(t) + ui−1,j+1(t) + ui+1,j−1(t) + 3ui−1,j−1(t) ]−

4gi,j
n2

.

Such a formula leads to the 5-point stencil K1,4 with only diagonal edges. The corresponding grid
is 2-colorable (see Fig. 5) and thus the parallel algorithm uses 2 phases. �

Fig. 5. The grid formed by 5-point stencils with chromatic number 2. It is a result of above proof.
Source: own
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CONCLUSION

A commonly used approach to parallelization discretization-based numerical algorithms that solve
PDEs consists of adapting a parallel scheme to a selected stencil-based numerical model [6], [7].
As discussed in Sec. 1.2, this one the parallel computation may be inefficient with respect to a
fraction of the number of active and idle nodes in each phase.
We chose a different approach in this paper. Namely, we design a new discretization scheme for
the partial differential equation of the second order formulated in Sect. 1.2. Our scheme is aimed at
minimization of idle nodes in each parallel phase and it leads to a 5-point stencil with exclusively
diagonal connections. Resulting finite-difference formula enables to reduce number o phases of a
corresponding parallel algorithm to 2. Comparing to the standard parallel algorithms, which uses
either 4 or 3 phases, such a result represents the significant improvement. The argument in our
proof is based on the combination of standard ideas, such as exploitation of Taylor series and linear
algebra, with graph coloring of stencils.
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Abstract: The contribution deals with an application of difference equations in the field of fi-
nance. It focuses on the loan schedule with fixed principal payments. The formulas for creating
an amortization schedule are derived using the simple linear difference equations. In particular,
we derive how to calculate the amount of the installment, the amount of interest and also the loan
balance in each payment period. Unlike financial mathematics, where the sequence properties are
used, all necessary formulas are obtained by solving difference equations. It is shown that recursive
relations between two consecutive elements of the sequences appearing in the fixed principle amor-
tization actually constitute the first order linear difference equations with constant coefficients. To
find the rules for calculating an arbitrary element of such sequences means to solve these difference
equations.

Keywords: fixed principal payment, loan amortization, linear difference equation.

INTRODUCTION

The values of most financial products are given as a sequence of values observed at discrete time
intervals and a number of models can be expressed by the recursion between two consecutive ele-
ments of the sequence where the initial value of the first element is given. However, the formulas
used in finance represent the rule for calculating an arbitrary element of such a sequence and are
usually derived from the recursion using properties of this sequence. The mentioned recursive rule
actually constitutes a difference equation ([8] and [5]) and finding the appropriate formula leads to
solving the difference equation. We encounter difference equations not only in finance but also in
life insurance ([15], for example.

Loan repayment means a gradual regular repayment of the provided amount of money over a cer-
tain period of time. The each periodic payment consists of part of interest and part of principal,
more detailed information can be found in [10], [16] or [18]. The loan can be repaid with constant
annuities when installments are still the same, but the proportion of interest and principal changes
during the each repayment. This case is discussed similarly in [14]. However in the following pa-
per we deal with the case of the constant principal part when differently sized installments are used.

A fixed principal payment loan has a declining payment amount. The principal portion of the pay-
ment is the same and the interest portion is less each period due to the declining principal balance.
Thus the constant principal plus the declining interest amount result in a declining periodic pay-
ment. The amortization schedule with fixed principal payments provides in the table the particular
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amount of interest, the periodic payment and the outstanding debt in each payment during the entire
loan repayment period.

1 LOAN REPAYMENT WITH FIXED PRINCIPAL

Suppose that the loan D is to be repaid also with interest in a total of n periodic payments, which
are due at the end of each interest period. Let r stand for the annual interest rate and k denote the
number of interest periods in a year. Thus the fraction r

k
means the interest rate per one interest

period and will be denoted i. We will not consider any tax on interest income for simplicity. The
loan repayment scheme described by the difference equations is shown in [3], [9], [2] and [4].

Let Dj represent the outstanding debt after the j-th payment. Each repayment consists of a constant
principal and a variable interest, which depends on the loan balance. The principal M remains the
same

M =
D

n
(1)

and the interest decreases with increasing j. The new levels of debt form an arithmetic sequence
and we gradually get them by subtracting the principal M . Thus the loan repayment process can
be described by the following recursive relation

Dj+1 = Dj −M, j = 0, 1, 2, . . . , n− 1

where the initial element is equal to the initial amount of debt

D0 = D. (2)

However the above recursion also represents the first order nonhomogeneous linear difference equa-
tion with constant coefficients (see [13] or [1])

Dj+1 −Dj = −M, j = 0, 1, 2, . . . , n− 1. (3)

1.1 Loan Balance in Amortization Schedule

To express an arbitrary element Dj of the loan balance sequence we can use the properties of the
arithmetic sequence or as we show we need to solve the corresponding difference equation. Us-
ing the principle of superposition, we obtain the general solution of (3) by summing the general
solution to the appropriate homogeneous equation and an arbitrary particular solution to the non-
homogeneous equation, for more information see [7] and [12], [17], [11].

The root of the corresponding characteristic equation of (3) is real number 1, thus the general so-
lution of the appropriate homogeneous difference equation is given by a constant C ∈ R. As the
root 1 is a part of the right-hand side of (3), which is the constant −M = −M · 1j , then a particular
solution can be estimated by the expression jb, where constant b ∈ R, for details see [6].

By substituting jb into (3) and modifying it for b we get

b = −M.
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Consequently the general solution of (3) takes form the sum

Dj = C − jM, where C ∈ R.

Constant C can be determined from the initial condition (2) and choosing j = 0 into mentioned
above equation

C = D.

Therefore the general solution of (3) can be expressed as

Dj = D − jM.

Combining with (1) we obtain the search formula for the outstanding debt after the j-th payment

Dj =
D

n
(n− j), j = 1, 2, . . . , n, (4)

which is used in the fixed principal amortization schedule to determine the loan balance. In the
special case we have with index j = 1

D1 =
D

n
(n− 1) (5)

and with j = n
Dn = 0, (6)

thus the total debt is actually repaid in a total of n installments.

1.2 Interest in Amortization Schedule

In this section we derive difference equation for calculation of interest. Let Uj denote the amount
of interest on the j-the payment. As the interest is always paid from the remaining part of the debt
at each period, we can write

Uj+1 = iDj, j = 0, 1, 2, . . . n− 1 (7)

and specially for j = 0 we have
U1 = iD. (8)

Multiplying the equation (3) by interest rate i we get

iDj+1 − iDj = −iM.

Using (7) and the above relation we obtain by renumbering the following recursion

Uj+1 − Uj = −iM, j = 1, 2, . . . , n− 1. (9)

This recurrence again represents the first order nonhomogeneous linear difference equation with
constant coefficients.
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With similar considerations as in the previous part according to the superposition principle, its gen-
eral solution is the sum of the general solution to the appropriate homogeneous equation, which is
constant C ∈ R, and an arbitrary particular solution to the nonhomogeneous equation, which can
be estimated by jb, where constant b ∈ R. It is because the right side of the equation can be ex-
pressed in the form −iM · 1j and the number 1 is the root of corresponding characteristic equation
of (9). Further details concerning the solution of such linear difference equations you can find in [6].

Substituting jb into (9) we obtain
b = −iM.

Hence we can write general solution of (9) as follows

Uj = C − ijM, where C ∈ R. (10)

The constant C can be now specified considering the equality (8) and the above equation for j = 1

iD = C − iM,

which implies
C = i (D +M).

Combining the previous relation, (1) and (10) we get the following formula for calculating the
amount of interest in the j-th payment

Uj =
D

n
i (n− j + 1), j = 1, 2, . . . , n. (11)

In the case of the last installment the amount of interest is expressed by

Un =
D

n
i. (12)

1.3 Periodic Payment in Amortization Schedule

Now we again use the difference equations to determine the amount of the regular installment, let
us denote it as Aj . It arises from the sum of interest and principal in each payment, so it applies

Aj = Uj +M, j = 1, 2, . . . , n. (13)

Expressing Uj from the above relation

Uj = Aj −M

and substituting it into the equation (9) we obtain

Aj+1 −M − (Aj −M) = −iM

which is again the first order nonhomogeneous linear difference equation with constant coefficients

Aj+1 − Aj = −iM, j = 1, 2, . . . , n− 1, (14)
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where the initial element according to (8) is

A1 = iD +M. (15)

From (1) further follows

A1 =
D

n
(in+ 1). (16)

In the same way as in the previous section we get an estimate of the general solution of (14) as the
sum

Aj = C − ijM, where C ∈ R, (17)

because real number 1 is the root of the characteristic equation of (14). From initial condition (15)
and the above equation with index j = 1 we can specify the constant C

C = i (D +M) +M.

Therefore substituting this into (17) we have

Aj = i (D +M) +M − ijM,

and considering (1) we get

Aj =
D

n
[i (n− j + 1) + 1] , j = 1, 2, . . . , n (18)

which is the formula for calculation of the amount of the j-th payment. This relation follows
directly from (13), (11) and (1). Let us note that the final payment with index j = n is equal to

An =
D

n
(i+ 1). (19)

CONCLUSION

We can include all the above derived formulas (16), (8), (5), (18), (11), (4) and (19), (12), (6) which
were created by solving the difference equations in the following Table 1.

It should be noted that all the mentioned formulas were obtained by solving difference equations
and not using the properties of sequences which is commonly used in financial mathematics. The
table below is called the fixed principal loan amortization schedule and is commonly used in fi-
nance. The table shows that though the principal amount included in each payment remains the
same, the interest amount and therefore also the total payment amount decreases over each pay-
ment period. Thus the loan balance is declining and equal to zero at the end.
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j-th installment Payment Aj Interest Uj Principal Mj Loan Balance Dj

0 - - - n
D

n
= D

1
D

n
(n i+ 1) n

D

n
i

D

n
(n− 1)

D

n

2
D

n
[(n− 1) i+ 1] (n− 1)

D

n
i

D

n
(n− 2)

D

n

3
D

n
[(n− 2) i+ 1] (n− 2)

D

n
i

D

n
(n− 3)

D

n...
...

...
...

...

j
D

n
[(n− j + 1) i+ 1] (n− j + 1)

D

n
i

D

n
(n− j)

D

n...
...

...
...

...

n− 1
D

n
(2 i+ 1) 2

D

n
i

D

n

D

n

n
D

n
(i+ 1)

D

n
i

D

n
0

Table 1: Amortization schedule
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Abstract: This paper presents the computation of the barycentric coordinates and Plücker co-
ordinates using the projective extension of the Euclidean space and geometric algebra. Using the
projective extension, it also presents a relationship between linear systems of equations Ax=b and
Ax=0 using the projective extension. An application of the principle of duality enables solving dual
problems efficiently. The given approach uses vector notation leading to efficient implementation
on GPU or efficient use of SSE instructions. As the presented approach is based on projective no-
tation, the division operation is postponed and the proposed method leads to higher computational
robustness.

Keywords: barycentric coordinates, Plücker coordinates, principle of duality, outer product, geo-
metric algebra

INTRODUCTION

Linear algebra and geometry are closely related research fields and many algorithms have been de-
veloped. Geometric calculus evolved from Euclid’s geometry(300 BC), Descartes geometry(1637),
Hamilton’s Algebra of quaternions(1843), Grassmann’s Extensive algebra(1844), Cayley’s Ma-
trix algebra (1854), Clifford’s algebra(1878), Gibbs Vector algebra(1881), Ricci’s Tensor calcu-
lus(1890) and Pauli&Dirac’s Spin algebra to Geometric Algebra&Calculus, which was formulated
by Hesteness[12] as Space-time algebra in 1996 1.

Since then the Geometric Algebra (GA) has developed to the universal multi-dimensional calcu-
lus, see Calvet[5], Macdonald[21], Kanatani[17], Gunn[10]. The geometric algebra is used in many
fields, e.g. physics Doran[6], computer graphics Dorst[7][8], Hildebrand[13], Vince[38][39], elec-
trical engineering Joot[16], Esch[9], geometry Calvet[5], motion interpolation Halma[11] robotics
Bayro-Corrochano[4][2], quantum computing Alves[1], applications Li[20], Perwass[24] etc.
The geometric algebra was extended to the Conformal Geometric Algebra(CGA), see Doran[6],
Bayro-Corrochano[3], Li[19], Hildenbrand[14], etc. 2

Today’s linear algebra uses the Gibbs vector algebra and Cayley’s matrix notation, which leads
to problems if multi-dimensional formulation is to be used.

1http://geocalc.clas.asu.edu/html/Evolution.html
2A brief introduction to the CGA: https://en.wikipedia.org/wiki/Conformal geometric algebra
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1 GEOMETRIC ALGEBRA

The vector algebra (Gibbs algebra) used nowadays uses two fundamental operations on two vectors
a,b in En, i.e. the inner product (scalar product or dot product) c = a ·b, where c is a scalar value
and outer product c = a∧b (the cross-product c = a×b in E3 ), 3 where c is a bivector and it has
different properties than a vector as it represents an oriented area in n-dimensional space.

The Geometric Algebra (GA) uses a new product called Geometric product defined as:

ab = a ·b+a∧b (1)

where ab is a geometric product.
In the case of the n-dimensional space, vectors are defined as a = (a1e1 + ...+ anen), b =

(b1e1 + ...+bnen) and the ei vectors form orthonormal basis vectors in E3 then we get:

1 0-vector (scalar) e12, e23, e31 2-vectors (bivectors)
e1,e2,e3, 1-vector (vectors) e123 3-vector (pseudoscalar)

It can be easily proved that the following operations are valid, including an inverse of a vector.

a ·b =
1
2
(ab+ba) a∧b =−b∧a a−1 = a/||a||2 (2)

It can be seen, that geometric algebra is anti-commutative and the pseudoscalar I in E3 has the basis
e1e2e3, i.e.

eie j =−e jei eiei = 1 e1e2e3 = I a∧b∧ c = q (3)

where q is a scalar value and a short notation eie j = ei j can be used:
In general, the geometric product is represented as

ab =
n

∑
i, j=1

aieib je j a ·b =
n

∑
i=1

aieibiei (4)

a∧b =
n

∑
i, j=1&i 6= j

aieib je j =
n

∑
i, j=1,&i> j

(aib j−a jbi)eie j (5)

It is not a friendly user notation for a practical application and causes problems in practical
implementations, primarily due to the anti-commutativity of the geometric product.

However, the geometric product can be easily represented by the tensor product, see Mochizuki[23],
which can be represented by a matrix. As the homogeneous coordinates will be used in the follow-
ing, the tensor product for the 4-dimensional case is presented 4 :

ab⇐⇒
repr

abT = a⊗b = Q =


a1b1e1e1 a1b2e1e2 a1b3e1e3 a1b4e1e4
a1b2e2e1 a2b2e2e2 a2b3e2e3 a2b4e2e4
a1b3e3e1 a3b2e3e2 a3b3e3e3 a3b4e3e4
a1b4e4e1 a4b2e4e2 a4b3e4e3 a4b4e4e4

= B+U+D (6)

where B+U+D are Bottom triangular, Upper triangular, Diagonal matrices, a4,b4 are the homo-
geneous coordinates, i.e. actually wa,wb (will be explained later), and the operator ⊗ means the
anti-commutative tensor product.

3Massey[22] and Silagadze[25] use multi-dimensional cross-product term
4The vector basis eie j , etc. will not be used explicitly
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2 PROJECTIVE EXTENSION AND PRINCIPLE OF DUALITY

Let us consider the projective extension of the Euclidean space and the use of homogeneous coor-
dinates. 5.

Figure 1: Projective extension and dual space

It uses homogeneous coordinates and two equivalent forms can be found:

• the form [x1, . . . ,xn : xw] is mostly used in computer graphics-related fields, namely [x,y : w]
in the case of P2, resp. [x,y,z : w] in the case of P3, where w is the homogeneous coordinate.

• the form [x0 : x1, . . . ,xn] is used in the mathematical fields and the x0 is the homogeneous
coordinate. This form has the advantage that the homogeneous coordinate is on the first
position.

It should be noted that ”:” is used to emphasize that the xw, resp x0 has a different meaning as it is
the ”scaling factor”, i.e. without a physical unit, while x1, . . . ,xn has different physical units, e.g.
meters[m] etc.

The mutual conversion between the Euclidean space and projective space is given as:

Xi =
xi

x0
x0 6= 0 , resp. Xi =

xi

xw
xw 6= 0 , i = 1, . . . ,n (7)

where Xi are coordinates in the Euclidean space.
In the case of the E2 space

X =
x
x0

Y =
Y
x0

x0 6= 0 , resp. X =
x
w

Y =
y
w

w 6= 0 (8)

where (X ,Y ), resp.[x,y : w] are coordinates in the Euclidean space E2, resp.in the projective space
P2. The extension to the E3, resp. En space is straightforward, see Vince[39], Yamaguchi[40].
The geometrical interpretation of the Euclidean (xw = 1, resp. x0 = 1) and the projective spaces is
presented at Fig.1.
It should be noted, that a distance of a point X = (X ,Y ), i.e. x = [x,y : w]T from a line in the E2 is
defined as

dist =
aX +bY + c√

a2 +b2
=

ax+by+ cw

w
√

a2 +b2
(9)

where (a,b) is the normal vector (actually it is a bivector) of the line.
5The concept of the projective extension for the CAD/CAM systems was deeply described in Yamaguchi[40]
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2.1 Inner and outer products

The inner product and outer product, i.e. the dot-product and cross-product in the E3, are known.
However, if the projective extension of the Euclidean space is used, there are slightly different in-
terpretations.

Let us consider vectors a = [a1,a2,a3 : a4]
T and b = [b1,b2,b3 : b4]

T in the projective space. They
represents actually vectors (a1/a4,a2/a4,a3/a4) and (b1/b4,b2/b4,b3/b4) in the E3 space. It can
be seen, that the diagonal of the matrix Q actually represents the inner product in the projective
representation:

a ·b = [(a1b1 +a2b2 +a3b3) : a4b4]
T ,

a1b1 +a2b2 +a3b3

a4b4
(10)

where , means projective equivalence. The inner product represents the trace tr(Q) of the matrix
Q and a ·b means a scalar value expressed using homogeneous coordinates.

The outer product in the E3 vector space is represented respecting anti-commutativity as:

a∧b⇐⇒
repr

3,3

∑
i, j=1&i> j

(aib jeie j−bia jeie j) =
3,3

∑
i, j&i> j

(aib j−bia j)eie j (11)

where a,b ∈ E3 vector space.

However, if the projective extension is used,

a∧b =⇐⇒
repr

4,4

∑
i, j=1&i> j

(aib jeie j−bia jeie j),
∑

3,3
i, j&i> j(aib j−bia j)eie j

a4b4e4e4
(12)

It means, that the result of the outer product c = a∧b is represented as c = [c1, . . . ,c3 : c4]
T , where

(c1, . . . ,c3), i.e. by a bivector (normal vector) of a plane in E3, while c4 = a4b4 is actually a scaling
factor.

It should be noted, that the outer product can be used for a solution of a linear system of equa-
tions Ax = b or Ax = 0, too.

2.2 Principle of duality

The principle of duality is essential principle, in general. Its application in geometry in connection
with the implicit representation using projective geometry brings some new formulations or even
new ones, see Johnson[15].

The duality principle for basic geometric entities and operators are presented by Tab.1 and Tab.2.
It the E2 case, a point is dual to a line and vice versa, the intersection of two lines is dual to a union
of two points, i.e. line given by two points, similarly for the E3 case.
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Table 1: Duality of geometric entities

Duality of geometric entities
Point in E2 ⇐==⇒

DUAL
Line in E2 Point in E3 ⇐==⇒

DUAL
Plane in E3

Table 2: Duality of operators

Duality of operators
Union ∪ ⇐==⇒

DUAL
Intersection ∩

3 COMPUTATION WITH HOMOGENEOUS REPRESENTATION

The geometric algebra (GA) presented above has been formulated for vectors in the Euclidean
space, as presented above. However, the concept can be extended using the projective extension of
the Euclidean space. It enables handling geometric entities like points, lines and planes, efficiently.

3.1 SOLUTION OF LINEAR SYSTEM OF EQUATIONS

A solution of a linear system of equations is a part of linear algebra and is used in many computa-
tional systems. It should be noted, that linear equations Ax = b can be transformed to an implicit
the homogeneous system, i.e. to the form Bξ = 0, where B = [A|−b], ξξξ = [ξ1, ...,ξn : ξw]

T ,
xi = ξi / ξw, i = 1, ...,n, see Skala[31, 33] 6.

As the solution of a linear system of equations is equivalent to the outer product (generalized
cross-vector) of vectors formed by row vectors ai of the matrix B, the solution of the system is
defined as:

ξξξ = a1∧a2∧ ...∧an [A|−b]ξξξ = 0 ai = [ai,1, . . . ,ai,n,−bi] (13)

which is equivalent to a solution of the linear system of equations:

a11 · · · a1n
... . . . ...

an1 · · · ann


x1

...
xn

=

b1
...

bn

 , i.e.

a11 · · · a1n −b1
... . . . ...

...
an1 · · · ann −bn




ξ1
...

ξn
ξw

=

0
...
0

 (14)

It is a significant result as a solution of a linear system of equations is formally the same for systems
for the both cases, i.e. Ax = 0 and Ax = b.
As the solution is formally determined, the formal linear operators can be used for further symbolic
processing using formula manipulation, as the geometry algebra is multi-linear. Even more, it is
capable to handle more complex objects generally in the n-dimensional space, i.e. oriented surfaces,
volumes, etc.

However, more general rules can be derived for the n-dimensional space and the outer prod-
uct application in Euclidean space. Let a matrix M is a n× n non-singular matrix representing a

6This can be also used in solution of ordinary differential equations using the Laplace transform, see Skala[34]
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geometric transformation, see the Eq.15.

(Ma)∧ (Ma2)∧ . . .∧ (Man) = det(M)n−1(M−1)T (a1∧a2∧ . . .∧an) (15)

In the case pro of the projective extension of the Euclidean space, the Eg.15 is simplified to Eq.16
due to implicit representation, as the det(M)n−1 is only a multiplicative constant.

(Ma)∧ (Ma2)∧ . . .∧ (Man) = det(M)n−1(M−1)T (a1∧a2∧ . . .∧an)

, (M−1)T (a1∧a2∧ . . .∧an)
(16)

where , means projective equivalence as we use the implicit formulation.

Now, it is possible to use the Functional analysis approach: Let L is a linear operator, then the
following operation is valid..... As there are many linear operators like derivation, integration,
Fourier and Laplace transforms etc., there is a wide variety of applications of those to the formal
solution of the linear system of equations, i.e. L(ξ ). However, it is necessary to respect that in
the case of the projective representation specific care is to be taken for deriving rules for derivation
etc., as a fraction is to be processed; similarly to other operators.

3.2 Intersections and unions

The direct consequence of the principle of duality is that the intersection point x of two lines p1,p2,
resp. a line p passing through two given points x1,x2, is given as:

x = p1∧p2⇐==⇒
DUAL

p = x1∧x2 (17)

where pi = [ai,bi : ci]
T , x = [x,y : w]T (w is the homogeneous coordinate), i = 1,2; similarly in the

dual case.
In the case of the E3 space, a point is dual to a plane and vice versa. It means that the intersection

point x of three planes ρρρ1,ρρρ2,ρρρ3, resp. a plane ρρρ passing through three given points x1,x2,x3 is
given as:

x = ρρρ1∧ρρρ2∧ρρρ3⇐==⇒DUAL
ρρρ = x1∧x2∧x3 (18)

where x = [x,y,z : w]T , ρρρ i = [ai,bi,ci : di]
T , i = 1,2,3.

It can be seen that the above formulae is equivalent to the extended cross-product, which in
natively supported by GPU architecture. For an intersection computation, we get:

x = p1∧p2 =

e1 e2 ew
a1 b1 c1
a2 b2 c2

 x = ρρρ1∧ρρρ2∧ρρρ3 =


e1 e2 e3 ew
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3

 (19)

Due to the principle of duality, a dual problem solution is given as:

p = x1∧x2 =

e1 e2 ew
x1 y1 w1
x2 y2 w2

 ρρρ = x1∧x2∧x3 =


e1 e2 e3 ew
x1 y1 z1 w1
x1 y2 z2 w2
x3 y3 z3 w3

 (20)

The above-presented formulae prove the strength of the geometric algebra approach 7 and also
7See Skala[29][30][32]
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(a) Duality of a point and a line in E2 (b) Barycentric coordinates in E2

Figure 2: Duality in E2: Lines and points, union and intersection, barycentric coordinates

simplifies geometric operations, e.g. line clipping Skala[35][36][37].

There is a natural question: What is the more convenient computation of the geometric product,
as computation with the outer product, i.e. extended cross-product, using basis vector approach
is not simple. Fortunately, the geometric product of ρρρ1,ρρρ2, resp. of x1 and x2 vectors using
homogeneous coordinates given as anti-commutative tensor product is given as:

ρρρ1ρρρ2 a2 b2 c2 d2
a1 a1a2 a1b2 a1c2 a1d2
b1 b1a2 b1b2 b1c2 b1d2
c1 c1a2 c1b2 c1c2 a1d2
d1 d1a2 d1b2 d1c2 d1d2

x1x2 x2 y2 z2 w2
x1 x1x2 x1y2 x1z2 x1w2
y1 y1x2 y1y2 y1z2 y1w2
z1 z1x2 z1y2 z1z2 x1w2
w1 w1x2 w1y2 w1z2 w1w2

3.3 Plücker coordinates

A line in the E3 space is given as an intersection of two planes or in a parametric form, see Eq.21:

ρ1 : a1X +b1Y + c1Z +d1 = 0
ρ2 : a2X +b2Y + c2Z +d2 = 0

, or X(t) = X1 +(X2−X1) t (21)

where: ρ1 : nT
1 X+d1 = 0 and ρ2 : nT

2 X+d2 = 0.
The question is how to compute a line p ∈ E3 given as an intersection of two planes ρρρ1, ρρρ2, which
is dual to a line determination given by two points x1, x2 as those problems are dual.

The parametric solution can be easily obtained using standard Plücker coordinates 8. The above-
given formula is difficult to derive 9 and not easy to understand and computation is complex.

q(t) =
ω×v
||ω||2

+ωt L = x1xT
2 −x2xT

1 ω = [l41, l42, l43]
T v = [l23, l31, l12]

T (22)

8The ”reference” point of a line is the closest point to the origin of the coordinate system, which is a substantial
property, e.g. in robotics and mechanical engineering

9https://en.wikipedia.org/wiki/Plücker coordinates
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Figure 3: Plücker coordinates

In 1871, Klein[18] derived that ωv = 0, i.e. there is a dimension reduction, see Skala[26] for
details.
However, using the outer product the formulation is easy and easy to understand, see Fig.3:

s = n1∧n2 ρρρ0 = [sT : 0]T x0 = ρρρ1∧ρρρ2∧ρρρ0 (23)

where s is the directional vector of and x0 is a ”reference” point of a line, which is the closest point
to the origin.

For the intersection of two planes, the principle of duality can be applied directly.
However, using geometric algebra, the principle of duality and projective representation, we

can directly write:
p = ρ1∧ρ2⇐==⇒

DUAL
p = x1∧x2 (24)

It can be seen, that the formula given above keeps the duality in the final formulae, too.
From the formal point of view, the geometric product for the both cases is given as:

ρρρ1ρρρ2⇐⇒repr
ρρρ1⊗ρρρ2 =


a1a2 a1b2 a1c2 a1d2
b1a2 b1b2 b1c2 b1d2
c1a2 c1b2 c1c2 c1d2
d1a2 d1b2 d1c2 d1d2

 (25)

The dual problem formulation:

x1x2⇐⇒repr
x1⊗x2 =


x1x2 x1y2 x1z2 x1w2
y1x2 y1y2 y1z2 y1w2
z1x2 z1y2 z1z2 z1w2
w1x2 w1y2 w1z2 w1w2

 (26)

It means that we have computation of the Plücker coordinates for both cases, i.e. for the compu-
tation of a line p = ρρρ1 ∧ρρρ2 given as an intersection of two planes in E3 and a line given by two
points, i.e. as a union of two points, in E3 as p = x1∧x2 using the projective representation and the
principle of duality. It should be noted that the given approach offers: significant simplification of
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computation of the Plücker coordinates as it is simple and easy to derive and explain, uses vector-
vector operations, which is especially convenient for SSE and GPU application one code sequence
for the both cases.

The Plücker coordinates are also in mechanical engineering applications, especially in robotics,
due to their simple displacement and momentum specifications. In other fields simple explanation
and derivation are important arguments for GA approach application.

3.4 Barycentric coordinates

The barycentric coordinates are often used in many applications, not only in geometry. The
barycentric coordinates computation, see Fig.2b, leads to a solution of a system of linear equa-
tions.

X1λ1 +X2λ2 +λ3X3 = X Y1λ1 +Y2λ2 +λ3Y3 = Y λ1 +λ2 +λ3 = 1 (27)

In the matrix form:X1 X2 X3
Y1 Y2 Y3
1 1 1

λ1
λ2
λ3

=

X
Y
1

 , resp.

x1 x2 x3
y1 y2 y3
w1 w2 w3

λ1
λ2
λ3

=

X
Y
w

 (28)

where X = (X ,Y ) ∈ E2 and x = [x,y : w]T ∈ P2, i.e. in the projective space.
However, a solution of linear system equations is equivalent to the outer product application, as
explained above; Skala[26][27]. Therefore, it is possible to compute the barycentric coordinates
using the outer product, which is recommendable especially for the GPU oriented applications.

Let us consider the E2 case and the barycentric interpolation between three points (a triangle
vertices) given generally in the projective space as xi = [xi,yi : wi]

T , i = 1, . . . ,3 & wi 6= 0, of the
given triangle, and vectors:

ξξξ = [x1,x2,x3,x] ηηη = [y1,y2,y3,y] ωωω = [w1,w2,w3,w] (29)

Then the barycentric coordinates µ in the homogeneous coordinates of the point x = [x,y : w]T are
given as: ξξξ

ηηη

ωωω




µ1
µ2
µ3
µw

=

0
0
0

 , i.e. µµµ = ξξξ ∧ηηη ∧ωωω (30)

where µµµ = [µ1,µ2,µ3 : µw]
T and the barycentric coordinates in the Euclidean space λ are given as:

λλλ = (λ1,λ2,λ3) = (− µ1

µw
,− µ2

µw
,− µ3

µw
) (31)

Similarly, for other dimensions, see Skala[28] for details. How simple and elegant solution!
It can be seen, that the presented computation of barycentric coordinates is simple and conve-

nient for GPU or SSE applications. As we have assumed from the very beginning, there is no need
to convert the coordinates of points from homogeneous coordinates to Euclidean coordinates. As a
direct consequence of that, we save a lot of division operations and increase the robustness of the
computation.
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4 CONCLUSION

This contribution briefly presents geometry algebra, which is not generally known and used. How-
ever, it offers simple and efficient solutions to many computational problems if combined with the
principle of duality and projective notation.
As the result of this contribution, a new formulation of the Plücker coordinates, often used in me-
chanical engineering and robotics, is given. As the operations are based on standard linear algebra
formalism, it is simple to use. The presented approach supports direct GPU application with signifi-
cant speed-up and parallelism potential. Also, the approach is applicable to d-dimensional problem
solutions, as geometric algebra is multi-dimensional.
The presented approach efficiently computes the barycentric coordinates of a point in the given
convex simplex, the Plücker coordinates of a line given by two points or two planes in the E3

space. As the division operation is postponed, higher robustness of computation can be achieved.
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Appendix

The GPU implementation of the outer product for the E3 case using the homogeneous coordinate is
quite simple. It should be noted that only 4 clocks for the outer product and 4 clocks for the inner
product are needed.

float4 a;
a.x = dot(x1.yzw, cross(x2.yzw, x3.yzw));
a.y = - dot(x1.xzw, cross(x2.xzw, x3.xzw));
a.z = dot(x1.xyw, cross(x2.xyw, x3.xyw));
a.w = - dot(x1.xyz, cross(x2.xyz, x3.xyz));
return a;

or more compactly as:

float4 cross_4D(float4 x1, float4 x2, float4 x3)
return(

dot(x1.yzw, cross(x2.yzw, x3.yzw)),
- dot(x1.xzw, cross(x2.xzw, x3.xzw)),
dot(x1.xyw, cross(x2.xyw, x3.xyw)),
- dot(x1.xyz, cross(x2.xyz, x3.xyz))

);
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Abstract: The series of pioneering papers from the years 1967 and 1968, including the substan-
tial contribution of the research group at Brno University of Technology and further scientists in
former Czechoslovakia, can be seen as the origin of the mathematical theory of the finite element
method, whose industrial applications date back (at least) to 1952. This paper tries i) to present
the motivation for the finite element method together with its classical theory of convergence of
approximate solutions and ii) to sketch its later development, driven by the progress both in math-
ematical and numerical analysis and in computational hardware and software, iii) supplied by an
example significant for the design of building structures.
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fracture.

INTRODUCTION

The years 1967 and 1968, well-known thanks to significant political changes in former Czechoslo-
vakia, stopped by the Soviet military intervention, can be seen also as the early years of the mathe-
matical theory of the finite element method with successful continuation, where the contribution of
the Czechoslovak researchers cannot be omitted. The engineering formulations of such numerical
approach, validated by important industrial applications, are (at least) 15 years elder: thus most
engineering journals took part on the celebration of 70 years of the finite element methods in the
several last months. However, unlike [1], devoted to the beginnings of the finite element method in
engineering computations, and [2], trying to sketch its later development, in this paper we shall pre-
fer the point of view of the mathematical theory, although it contains and generates still new open
questions, even in some problems covered by numerical solvers of commercial software packages.

Most engineering formulations rely on the physical principles of classical thermomechanics (typi-
cally in some their simplified versions) and lead to boundary and initial value problems for partial
differential equations (PDEs) and their systems. Their analytical solutions, unlike ordinary dif-
ferential equations (ODEs), are known only for selected model problems, unknown or exotic in
practice, but useful for the software development and testing. Also most semi-analytical solutions
(using Fourier series, Laplace or Fourier transforms, Green functions, etc.) are restricted to rather
special classes of problems; moreover some difficulties in their numerical approaches (as evaluation
of infinite integrals) are not included in original problems. This motivated the development of fully
discretized approaches, generating a finite (but sufficiently large) number of algebraic equations,
linear if possible, with sparse system matrices: always for originally linear problems, for partic-
ular steps of iterative procedures for nonlinear ones. Such methods can be distinguished by their
approach to the discretization: in their rough classification the (at least historically) natural first
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choice is the finite difference method (FDM), the second (more advanced) one the finite element
method (FEM), the third one the problem-oriented cooperation of FEM with further approaches,
including FDM.

A first model (combined Dirichlet and Neumann) boundary value problem for an ODE reads

− (au′)′ + bu = f for all x ∈ [0, `] , u(0) = 0 , au′(`) = g , (1)

the prime symbol denoting d/dx for brevity; f(x) and g (a constant) are prescribed, as well as
both coefficients a(x) and b(x), u(x) is an unknown function. Applying FDM, dividing the interval
[0, `] into n subintervals [`i−1, `i], taking `0 = 0 and `i = ih for h = `/n and any i ∈ {1, . . . , n},
introducing fi = f(ih), ai = a(ih), bi = b(ih) and similarly also ui ≈ u(ih) (a priori unknown),
setting u0 = 0, we can write

− ai(ui+1 − 2ui + ui−1) + h2biui = h2fi , un+1 − un−1 = 2hg , (2)

which generates a system of linear algebraic equations; let us notice the tricky value un+1, not
contained in (1).

An alternative approach works with the integration of the first equation (1), multiplied by an appro-
priate test function v, satisfying v(0) = 0, by parts (at least in the distributive sense). The obvious
result is ∫ `

0

av′u′ dx+

∫ `

0

bvu dx− [avu′]`0 =

∫ `

0

vf dx . (3)

Taking the last equation (1) into account, from (3) we obtain∫ `

0

au′v′ dx+

∫ `

0

bvu dx =

∫ `

0

vf dx+ v(`)g . (4)

Using the notation (w, w̃) for the integrals of products of ww̃ on [0, `] for any appropriate functions
w and w̃ and, moreover, the notation 〈v , g〉 = v(`)g formally, we can rewrite (4) as

(v′, au′) + (v, bu) = (v, f) + 〈v, g〉 . (5)

Applying the standard definitions of Lebesgue and Sobolev spaces by the monograph of T. Roubı́ček
on PDEs (2005) [3], Part 1, it is natural (cf. the second equation (1)) to introduce the space of
test functions V = {w ∈ W 1,2(0, `) : w(0) = 0}, to assume f ∈ L2(0, `) and always positive
a, b ∈ L∞(0, `) and to seek for an unknown u ∈ V by (5); (. .) can be than interpreted as the scalar
product in L2(0, `). Such unique u can be also derived as minimum of the quadratic functional

G(v) =
1

2
(v′, av′) +

1

2
(v, bv)− (v, f)− 〈v, g〉 (6)

where v ∈ V again, i. e. G(u) ≤ G(v) for any v ∈ V , whereas G(u) = G(v) just for u = v.

Usually (5) is referred as the weak (Galerkin) formulation of (1) and the requirement to minimiza-
tion of G(v) in (6) as the variational (Ritz) formulation of (1). Both formulations (5) and (6) admit
various approximations of an unknown function u, exploiting some basis of test functions v, which
can result in different classes of numerical algorithms. In particular, in the simplest choice of FEM,
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taking u as linear Lagrange splines (continuous piecewise linear functions) using the same nodes
0, h, . . . , nh = ` as in FDM, which can be expressed as linear combinations of n piecewise linear
basis functions vi(x) = (x − (i − 1)h)/h for x ∈ [(i − 1)h, ih] and vi(x) = ((i + 1)h − x)/h
for x ∈ [ih, (i + 1)h] (i = n is not allowed in this case), zero otherwise, with i ∈ {1, . . . , n}, we
are allowed to introduce Vh as a finite-dimensional subspace of V , supplied by the above sketched
basis. Consequently the discretized form of (5) is

(v′h, au
′
h) + (vh, buh) = (vh, f) + 〈vh, g〉 , (7)

which for all vh ∈ Vh generates a system of linear algebraic equations again, very similar to (2),
obtained from FDM: the unknowns are the approximations of u in particular nodes again, some
differences can be observed due to numerical quadrature rules handling a, b and f , applied to
particular additive terms of (7), moreover in FEM no tricky node is needed. All details, including
simple examples, available in the MATLAB environment, and numerous illustrations, can be found
e. g. in [4], Parts 8 (FDM), 9 (numerical quadrature) and 10 (FEM).

For most students of numerical mathematics without strong motivation for the study of FEM, com-
ing from real physical, engineering, etc. applications areas, such conclusion is far from being satis-
factory: the approach of FEM seems to be a strange and complicated way how to come to the same
or very similar results as from the much more simple and transparent approach of FDM. A second
model boundary value problem can be useful to overcome such opinion. Let us introduce a domain
Ω in the N -dimensional Euclidean space RN with a Lipschitz boundary ∂Ω: frequently we have
N = 2 or N = 3 in applications, for N = 1 we should come back to a first model boundary value
problem. Let us assume that ∂Ω consists of two disjoint parts Θ and Γ where Θ has a non-zero
Hausdorff measure on Ω. We shall work with some Cartesian coordinate system x = (x1, x2, x3)
in RN , using the Hamilton operator ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3), the central dot for the scalar
product in RN and N for the outer unit normal to ∂Ω Thus an announced second model problem
for a PDE reads

−∇ · (a∇u) + bu = f on Ω , u(0) = 0 on Θ , a∇u · N = g on Γ ; (8)

f on Ω and g on Γ are prescribed, as well as both coefficients a and b on Ω, u is a unknown function
on Ω. Analogously to (2), FDM works for a paralleliped Ω = [0, `1]× . . .× [0, `N ] efficiently (the
details can be left the patient reader), in most other cases one comes to serious difficulties with
the assertion of boundary conditions of both types on a (in general) curved (N − 1)-dimensional
boundary.

An alternative approach relies on the integration by parts again, assuming v = 0 on Θ and utilizing
the Green - Ostrogradskiı̌ theorem (whose all proofs are rather difficult, unlike the case N = 1),
with the result ∫

Ω

a∇v · ∇u dx+

∫
Ω

bvu dx−
∫
∂Ω

av∇u · N ds(x) =

∫
Ω

vf dx . (9)

Taking the last equation (8) into account, from (9) we obtain∫
Ω

a∇v · ∇u dx+

∫
Ω

bvu dx =

∫
Ω

vf dx+

∫
Γ

vg ds(x) . (10)

91



Using the notation (w, w̃) for the integrals of products of w w̃ on Ω, ((W ,
tildeW for the integrals ofW · W̃ on Ω where W andW are vector functions with values in RN

and 〈w, w̃〉 for those on Γ, we can rewrite (10) as

((∇v, a∇u)) + (v, bu) = (v, f) + 〈v, g〉 . (11)

Here it is natural (cf. the second equation (8)) to introduce the space of test functions V = {w ∈
W 1,2(Ω) : w = 0 on Θ}, to assume f ∈ L2(Ω), g ∈ L2(Γ) and always positive a, b ∈ L∞(Ω)
and to seek for an unknown u ∈ V by (11); (. , .) ((. , .)) and 〈. , .〉 can be than interpreted as the
scalar products in L2(Ω), L2(Ω)N and L2(Γ). Such unique u can be also derived as minimum of
the quadratic functional

G(v) =
1

2
((∇v, a∇v)) +

1

2
(v, bv)− (v, f)− 〈v, g〉 (12)

where v ∈ V again.

Preferring (11) to (12) also in these considerations, as well as the basis of linear Lagrange splines
on N -dimensional simplices (triangles, tetrahedra, . . . ), for Ω compound from such simplices and
Θ and Γ just from their N -dimensional faces we can repeat the arguments from the case N = 1:
Vh is certain n-dimensional subspace of V , whose basis consists of special Lagrange splines with
unit values just in 1 node; finally we receive

((∇vh, a∇uh)) + (vh, buh) = (vh, f) + 〈vh, g〉 (13)

for each vh ∈ Vh; h here can be understood as the longest applied edge in the above sketched
decomposition of Ω to n-dimensional simplices. Let us remark that this approach becomes more
delicate in the case of still more general Ω, Θ and Γ where the approximating n-dimensional spaces
are not exactly subspaces of V ; this brings an additional potential source of numerical errors.
Nevertheless, FEM is much more robust than FDM to handle (at least) complicated geometrical
configurations. Moreover, only the approximations of first derivatives (simple functions here) occur
in (13), similarly to (7), unlike the second differences in (2) and its hypothetical N -dimensional
generalization.

1 PREREQUISITES AND THE CLASSICAL THEORY BEFORE 1990

The evident drawback of FEM, in comparison to FDM, is that the proper study of its convergence
cannot be performed using the standard mathematical approaches developed in the 18th and 19th
century. However, the fundamentals of variational methods, as an important tool needed by FEM
(and many other computational approaches), were invented by L. Euler (1744) in [5] yet. The
approximate solution of the problem of minimal area was constructed using the piecewise linear
functions on triangles by by K. H. Schellbach (1851) in [6]; this can be seen as the first ad hoc
implementation of the finite element technique. Nevertheless, the non-existence of appropriate
computational machines limited such approach strongly for the long time. The minimization of
energy potential (functional) was used for the justification of the existence of solution of the Pois-
son equation hu = f in certain space of integrable function with scalar product by D. Hilbert
(1901), summarized (with numerous other results) in [7]; this is the origin of the modern nomen-
clature of Hilbert spaces where the existence of scalar products is important for the construction
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of orthogonal projections, namely from original function spaces to approximating subspaces in nu-
merical algorithms. A more general minimization principle was formulated by W. Ritz (1909) in
[8]; after its publication J. W. Strutt, well-known as baron Rayleigh among physicists, criticized
the formulation “new method” in the title: indeed, similar minimization approach using eigen-
functions can be traced in his much elder monograph (1877) [9]. The weak formulation of some
engineering motivated problems without existence of potentials like (6) or (12) was presented by
B. G. Galerkin (1915) in [10]. The still used approximation spaces for such formulation were de-
signed by G. I. Petrov (1940) in [11]. Certain comparable numerical approach, referring to the lin-
ear problem of elasticity, was suggested by A. Hrennikoff (1941) in [12]. The progress in computer
hardware and software brought the renaissance of approximations with piecewise linear functions
of triangles: namely R. Courant applied such approach more times to for the analysis of the Laplace
equation based on the energy minimization, typically (1922, 1943) in [13] and [14].

Fig. 1 Boeing YB52 prototype, designed using the intuitive finite element technique (historical
photo from https://www.thisdayinaviation.com/tag/boeing-yb-52-stratofortress/, 15th April 1952).

The above mentioned new possibilities in scientific and technical computations supported also
the design of real structures under mechanical loads. The engineering society refers namely to
the successful FEM-based dynamical design of wings of Boeing YB52 – see Fig. 1. The plane
stresses were approximated by clever intuitive combinations of simple functions, as announced
by N. J. Turner (1952), followed (with certain delay, 1956) by the proper publication in [15]. As
“the finite element method” this approach was presented later by R. W. Clough (1960) in [16] (or
probably 1956 less officially yet). Many ideas built in modern FEM algorithms have their origin
just in several following years: e. g. hybrid elements, Lagrange multipliers, and searching for
saddle point of functionals are mentioned in the monograph of O. C. Zienkiewicz (1967) [17].
This significant applied research progress highlighted the absence of mathematical background
of FEM. Thus in (at least) two following decades we can trace two quite different trends in the
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theory of numerical methods: i) the effort to reduce FEM to a choice of special basis functions
accompanied by some (not very transparent) mathematical manipulations, in the reasonable cases
fully transferable to FDM, ii) the development of FEM as a general tool, applicable to nearly all
physical and engineering problems, sending FDM, together with various semi-analytical methods,
to the past of scientific computations. During these decades the trend ii) prevailed totally, although
in a slightly less optimistic context: the careful problem-oriented application of FEM is needed,
collaborating with further methods, including FDM.

Fig. 2 The title of the celebrated article [25], supplied by the begin of References; the years of
publishing of most relevant articles for its analysis are highlighted.

It is not easy to set some symbolic starting date for the mathematical theory of FEM. From 1960
the series of papers, working with functional analysis, Sobolev spaces etc., prepared all needed
ingredients for the proper analysis of convergence properties of FEM for a sufficiently large class
of problems. A system of piecewise linear functions on triangles, covering a rather general domain
Ω in R2, was applied to the Laplace equation hu = 0, supplied by both Dirichlet and Neumann
boundary conditions by K. O. Friedrichs (1962) in [18]; this report contains probably the first cor-
rect proof of convergence of FEM in the Hilbert spaces L2(Ω) and W 1,2(Ω), although no conver-
gence rate is guaranteed. The theory of approximation for variational problems was developed by
J. Cèa (1964) in [19]. For sufficiently smooth solutions u and certain strategy of generation of a
triangular mesh inR2, introducing selected boundary value problems for the Laplace equation and
some its generalizations, the linear convergence rate of the type

‖u− uh‖W 1,2(Ω) ≤ Ch‖u‖W 2,2(Ω) (14)

where a positive C, independent of u, exists, was verified by L. A. Oganesyan (1964) in [20]. The
estimate (14) can be still seen as a fundamental formula for the quality of convergence of the so-
called h-version of FEM; later improvements replaced only the norm in W 2,2(Ω) by the seminorm,
working with second derivatives only, specified some computable bounds for C, etc. For the linear

94



theory of elasticity inR2 the formal proof of convergence of FEM (without rate considerations) was
done by F. Kang (1965) in [21], covering various element types: triangles, parallelipeds (beyond the
piecewise linear test functions) hanging nodes (as the first step to discontinuous approximations),
etc. The attempts to handle nonlinear problems can be traced from the contribution of P. G. Ciarlet
(1967) in [22]: the solution of systems of (usually spares) systems of linear algebraic equations
must be accompanied by additional iterative procedures.

For the further improvement of guaranteed convergence properties for FEM some deeper results
from the theory of approximation and interpolation in general function spaces were needed. Such
results for the approximation of operators in the spaces of distributions were derived by J.-P. Aubin
(1967) in [23]. The Hermite interpolation for PDEs was elaborated by G. Birkhoff et al. (1968) in
[24]. Consequently M. Zlámal (1968) in his famous article [25], whose title page is presented by
Fig. 2, derived the convergence rate also for quadratic elements and a model equation of second
order in R2, using the so-called minimum angle condition: the decomposition of Ω to triangles,
introducing h as the maximal length over all applied triangle edges, passing h → ∞, must be
performed is such way that all triangular elements have still their minimal angles greater or equal
to a fixed positive constant. This condition is equivalent to the requirement that each triangle
must contain such circle with a radius ρ that ρ/h does not exceed a fixed positive constant; for
N > 2 (not discussed in [25]) this requirement should be preferred because of its more transparent
generalization from triangles to N -dimensional simplices and circles to N -dimensional spheres. In
the theory of FEM, this is well-known as the regular family of decomposition of Ω to simplices.

Fig. 3 The hypothetical centre of universe in Brno, crossing of Demlova and Trávnı́ky (Lawns)
Streets (author’s photo, 2012). The English translation of the Czech text: The centre of universe is

everywhere. This one is preferred by Dr. Jiřı́ Grygar and Prof. Alexander Ženı́šek.

The results of M. Zlámal, who was the director of the Laboratory of Computing Machines at Brno
University of Technology (BUT), with close connections to several faculties of BUT, were sup-
ported by the physical, mathematical, numerical and computational analysis of the team of his
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collaborators, up to the software development and its application to selected engineering problems.
Several these experts contributed to the theory of FEM significantly, as professors at BUT. Ex-
cept M. Zlámal, they were physicists or engineers originally, but changed their research priorities
to FEM. In particular, from 4 authors of the monograph [26] (1979) covering both engineering
and mathematical approaches, only F. Leitner continued his career as engineer in the design of
water structures, unlike V. Kolář (expert in traffic structures, Faculty of Civil Engineering BUT),
A. Ženı́sek (theoretical physicist, Faculty of Mechanical Engineering BUT) and J. Kratochvı́l (ex-
pert in water structures, Faculty of Civil Engineering BUT), as well as unlike F. Melkes, the author
of [27] (1972) (expert in electrical machines, Faculty of Electrical Engineering and Communica-
tion BUT). This research was continued (even outside BUT) in some reasonable form also in the
period of political repressions in Czechoslovakia 1970–1989. Moreover, all these persons were
active in further, seemingly remote disciplines, as in astrophysics (with his friend J. Grygar), po-
etry, singing and advanced card games in the case of A. Ženı́ıšek, in addition to his director’s duties
at the Institute of Mathematics of the Faculty of Mechanical Engineering of BUT, as documented
only partially by Fig. 3. Let us remind also some further worldwide-known professors from for-
mer Czechoslovakia, contributed to the mathematical theory of FEM, mentioned in this paper (in
the alphabetical order): I. Babuška (originally Prague, since 1968 College Park (Maryland) and
Austin (Texas)), V. Dolejšı́ (Prague), Z. Dostál (Ostrava), M. Feistauer, M. Křı́žek, K. Rektorys,
T. Roubı́ček (all Prague), J. Sládek and V. Sládek (Bratislava).

Parallel to FEM, the development of variational methods for the numerical analysis of PDEs cannot
be omitted, namely the books of K. Rektorys (1974, 1985) [28] (on elliptic equations) and [29] (on
parabolic and hyperbolic equations). Another remarkable discussion was connected with the min-
imum angle condition by [25]: its partial improvement by P. Jamet (1976) in [30] had a negligible
public acceptance, but its later modification by M. Křı́žek (1991) in [31] became a popular part in
most studies of FEM convergence. Its principal idea is to replace the minimum angle condition
by the maximum angle one: all triangular elements must still have their maximal angles lesser or
equal to a fixed constant (lesser than π). This condition is equivalent to the requirement that each
triangle must be contained in such circle with a radius R that h/R does not exceed a fixed positive
constant; the generalization for N > 2 with N -dimensional spheres and simplices is obvious. In
the theory of FEM, this is well-known as the semiregular family of decomposition of Ω to sim-
plices. Unfortunately, unlike the case of piecewise linear test functions, this does not generate the
estimates of the type (14) in more complicated cases automatically, thus the general strategy of
choice of such families of decompositions, with the additional influence of numerical integration,
cannot be seen as a quite closed problem yet. For problem-oriented algorithms, namely for those
working with local mesh refinements in the classical h-version of FEM, the so-called p-version of
FEM can be useful, working with the increasing degree of piecewise polynomial test functions; for
the elastoplastic deformation such approach was elaborated by B. A. Szabó (1978) in [32]. The
combined hp-version of FEM was introduced and studied by I. Babuška (1988) in [33].

2 EXPANDING RESEARCH DIRECTIONS AND APPLICATIONS

The proper critical overwiev of further development of FEM, its alternatives and their combinations
could have (at least) the similar extent for any such particular method as all preceding sections of
this paper, due to expanding research directions and applications since 1990, which is not accept-
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able for the paper of this type. Thus we shall continue only with brief comments and references,
without detailed explanation of principles. In general, the increasing abilities of hardware and
software make it possible to come from 2-dimensional to 3-dimensional and even (in special appli-
cations) to more-dimensional problems. The utilization of hp-version of FEM supports the mesh
adaptivity together with the choice (usually still polynomial) test functions, supported by various a
priori and a posteriori error estimates, working with real discrete partial results, unlike (14) (where
the right-hand side contains an unknown u). Moreoever, polynomials can be replaced by other
quasi-orthogonal functions like wavelet, frames, etc., as explained by X. Chen et al. (2004) in
[34]. Namely in damage mechanics special enrichment strategies for the bases of test functions
have been elaborated: namely the partition of unity FEM (PU-FEM) by J. Melenk and I. Babuška
(1996) in [35], the generalized FEM (G-FEM) by T. Stroubolis et al. (2001) in [36] and the (extrin-
sic) extended FEM (X-FEM) by N. Moës at al. (1999) in [37], whose intrinsic variant by T.-P. Fries
(2006) in [38] needs no additional degrees of freedom thanks to an advanced adaptive strategy (i. e.
the order n of a resulting system of linear algebraic is not increased). For large problems as more
deformable bodies with contact conditions the distributed and parallel computations with succes-
sive updates of contact data can be useful, supported by the technique of finite element tearing and
interconnecting (FETI) by Z. Dostál et al. (2010) in [39]. This could be coupled with the discon-
tinous Galerkin formulation of FEM (DG-FEM) by M. Dolejšı́ and M. Feistauer (2015) in [40],
applicable to the Navier - Stokes equations of (both laminar and turbulent) fluid flow, although the
existence, uniqueness and smoothness of solutions contain still a lot of open questions in such case.

Certain comeback of FDM, upgraded by L. Gavete at al. (2003) in [41], can be registered for
PDEs of evolution of both parabolic and hyperbolic types, as heat transfer (energy conserva-
tion, a parabolic PDE), moisture or contaminant transfer in porous medium (mass conservation,
a parabolic PDE), dynamics of deformable bodies under mechanical loads (energy conservation, a
hyperbolic PDE), etc. Thanks to the properties of Rothe sequences in Bochner - Sobolev spaces,
introduced by [3], Part 7, one can decompose, using the Cacuchy initial conditions, the solution od
such PDE, step by step in time, to a series of solutions of elliptic PDEs, using FEM typically. Only
for illustration: let us consider a parabolic model problem, slightly adopted from (11),

(v, cu̇) + ((∇v, a∇u)) + (v, bu) = (v, f) + 〈v, g〉 , (15)

valid for each t ∈ I, I = [0, τ ] being a finite time interval; the upper dot symbol means ∂/∂t
for brevity. Unlike positive time-independent characteristics a, b, c ∈ L∞(Ω), taking H = L2(Ω)
and Z = L2(Γ), we suppose f ∈ L2(I,H) ∼= L2(Ω × I) and g ∈ L2(I, Z) ∼= L2(Γ × I). The
Cauchy initial condition u(., 0) = u0 with u0 ∈ V is prescribed; the aim is to find an unknown
u ∈ L2(I, V ) such that its time derivative satisfies u ∈ L2(I,H), i. e. u ∈ W 1,2,2(I, V,H). Thus
the time discretization can be motivated by the classical Euler explicit method, taking φs instead
of φ(sδ), s ∈ {1, . . . ,m}, δ = τ/m, for appropriate time-dependent functions φ, similarly to
functions of x iintroduced above (2), in particular us ≈ u(sδ) (for an unkonwn u), with the result

(v, cs(us − us−1)) + δ((∇v, as∇us)) + δ(v, bsus) = δ(v, fs) + δ〈v, gs〉 , (16)

valid for each v ∈ V . The announced Rothe sequences for any integer m can be then compound
from (us−us−1)/δ (linear Lagrange splines on I) and us (simple functions on I); the constructive
proof of existence of a unique solution of (15) is than based on the limit passage from (16) to (15)
assuming m → ∞. For a model hyperbolic problem we could take ü instead of u in (15) and
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incorporate the second Cauchy initial condition u̇(., 0) = û0 where û0 ∈ V is prescribed, too; thus
it is natural to search for u ∈ W 2,2,2,2(I, V,H, V ∗), V ∗ being the adjoint space to V . An alternative
approach for both parabolic and hyperbolic problems relies on the so-called method of lines: using
the multiplicative Fourier decomposition, involving e, g. some FEM basis, we are able to come,
instead of an original PDE, to a sparse system of time-variable ODEs; in most practical problems
an additional time discretization is needed (because of the expensive eigenvalue analysis), thus such
approach leads to a very similar algorithm to the original one.

A concurrent method to FEM is the (also integral) finite volume method (FVM), avoiding the inte-
gration by parts like (3) and (9), thus the better fulfilment of conservation principle at the discretized
level (not only in the limit case h → 0) can be expected, as derived by Cai (1990) in [42], para-
phrasing the title of [25]. FVM is frequently used (for some variables) in combination with FEM:
e. g. the primary triangular mesh for FEM inR2 is accompanied by the secondary polygonal mesh
around the nodes of the primary one. In some cases also certain (typically incomplete) knowledge
on general soultions can be exploited, even without FVM, e, g. using the theory of Green func-
tions, which leads to the boundary element method (BEM), introduced by the brothers J. Sládek
and V. Sládek (1990) in [43]: the dimension N for discretization is reduced to N −1, but on a
curved boundary where Dirac distributions, Heaviside functions, etc. occur. Another idea could
be the adaptation of the least square technique to FEM (LS-FEM), involving both a given PDE
and all boundary conditions via appropriate weights; this rather rare approach was optimized by
B.-N. Jiang and L. Povinelli (1993) in [44].

New research directions related to FEM were initiated by the development of advanced materi-
als, structures and technologies, too, due to the necessity of incorporation of randomness of their
structure and bridging available data from laboratory and in situ micro- and macrostructural exper-
iments. The methodology of handling uncertain data in initial conditions, geometrical description
and material properties, referred as stochastic FEM (S-FEM), was suggested by I. Babuška et al.
(2005) in [45]. The more-scale computations (primary deterministic, mostly periodic) can be per-
formed using the multiscale FEM (Ms-FEM), introduced by T. Hou and Y. Efendiev (2009) in [46].
Moreover, the recent modelling and simulation approaches to continuum mechanics, including di-
rect, sensitivity and inverse problems, force the analysis of multi-physical, strongly nonlinear initial
and boundary value problems for systems of PDEs of evolution frequently, thus the development
of robust solvers of systems of nonlinear algebraic equations is needed (utilizing the inexact New-
ton method, the conjugate gradient method, the Nelder - Mead simplex method, some selected soft
computing tricks, . . . ).

Even for nonlinear generalizations of problems like (11) and (15), the typical physical fundamen-
tals are i) the principle of conservation of scalar quantities, usual in classical thermodynamics, as
mass, components of (linear and angular) momentum and energy (the first thermodynamic law), ii)
constitutive relations of selected types in form of inequalities, covering admissible irreversible pro-
cesses, or direct incorporation of such special relations, as traditional in the engineering theories of
plasticity, damage, contacts / impacts of deformable bodies, etc. (the second thermodynamic law),
and iii) the positivity of Kelvin temperature (the third thermodynamic law). As typical examples of
nonlinear problems, whose existence proofs (overcoming technical difficulties) can be performed
similarly to that sketched above, in particular to (9) here, with the obvious application of FEM to
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computational analysis, we can present

((∇v, a(uk−1)∇uk)) + (v, buk) = (v, f) + 〈v, g〉 , (17)

(a generalized Poisson equation with a nonlinear coefficient), or

((∇v, a|∇uk−1|p−2∇uk)) + (v, buk) = (v, f) + 〈v, g〉 (18)

with some finite real p > 2 (another generalization with the so-called p-Laplacian); the upper
indices k ∈ {1, 2, . . .} refer to particular steps of the method of successive approximation. Un-
fortunately, such simple approach, as that suggested by (17) and (18), to the analysis of numerous
strongly nonlinear problems of physical and engineering practice, is quite impossible, including
the Navier - Stokes equations of fluid flow, or the Maxwell equation of an electromagnetic field:
cf. the still unsolved 4th Millenium Prize Problem [47]. Moreover, all partial existence results, as
that of E. Feireisl and M. Novotný (2022) in [48], work with dissipative varifold solutions, or other
very abstract definitions, whose effective numerical characterization and reasonable physical inter-
pretation form an additional serious problem. Other difficulties are contributed by physicists: still
more complicated multiple-scale formulations include a lot of internal variables, whose reliable
quantitative identification may be even more complicated than the analysis of the original direct
simulation problem. Thus most engineering computational approaches, summarized by B. Szabó
and I. Babuška (2021) in [49], can be seen as certain compromises between i) the requirement of
practice, including the time and money for the complete analysis, ii) the formal existence and con-
vergence theory iii) the robustness and effectiveness of computations and iv) the transparency and
reliability of numerical results. Such compromise will be demonstrated on the following numer-
ical example, referring to the recent research at the Faculty of Civil Engineering of BUT: cf. the
research project mentioned in Acknowledgement.

3 AN ILLUSTRATIVE EXAMPLE

A significant problem of engineering practice is the reliable prediction of strain and stress devel-
opment of cement-based composites under mechanical, thermal, etc. loads. Because of their poor
behaviour in tension, causing the risk of irreversible damage, such composites contain some stiffen-
ing components in most applications, e. g. the metal fibres implemented in the following example.
The crucial difficulty of all computational models is the incorporation of some scale bridging. The
so-called quasi-brittle behaviour of such composites can be characterized roughly by 4 phases: i)
elastic deformation, ii) creation of damaged zones with microscopic cracks, iii) initiation and de-
velopment of macroscopic cracks, iv) total destruction of material structure. The model presented
here comes from the both geometrical and physical linearization for i), implementing two different
nonlinear modifications, taking ii) and iii) into account: the stiffness decrease due to certain dam-
age factor, introduced by P. Havlásek et al. (2016) in [50], using the nonlocal stress evaluation by
A. C. Eringen (1984), coming from [51], for ii), and the dynamics of cohesive interfaces, as ana-
lyzed by M. G. Pike and C. Oskay (2015) in [52]. However, in such simplified model the analysis
of complicated systems of macrocropic cracks by iii), induced by extensive damaged zone by ii),
tending to the final stage iv), is not realistic.

We shall demonstrate the problem formulation in RN for N = 3; the details of its plane stress
simplification with N = 2, as presented by Fig. 4, will be left to the curious reader. Let us consider
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Ω as a union of a finite number of domains with Lipschitz boundaries in R3. The set of all such
boundaries ∂Ω consists of 3 parts: Θ for Dirichlet boundary conditions, Γ for Neumann boundary
conditions and Λ for interior interfaces (potential macroscopic cracks and matrix / fibre contacts).
We shall study the development of a displacement u, related to the initial configuration of Ω, under
the volume loads f ∈ L2(I,H) and the surface loads g ∈ L2(I, Z); here H = L2(Ω)3 and
Z = L2(Γ)3 (because all values of u, depending on x and t, have 3 components now); similarly we
introduce X = L2(Λ)3. The conservation of (linear) momentum then reads

(v, ρü) + (v, αρu̇) + ((ε(v), σ)) = (v, f) + 〈v, g〉+ 〈Dv, T 〉∗ (19)

for any v ∈ V : here V = {w ∈ W 1,2(Ω)3 : w = o on Θ} where o denotes the zero vector in R3.
The initial Cauchy conditions are u(., 0) = o and u̇(., 0) = û0 for some prescribed initial velocity
û0 ∈ V . In (19) the following scalar products occur now: (. , .) in H , 〈. , .〉 in Z, 〈. , .〉∗ in X and
((. , .)) in H × H; moreover we utilize the standard small strain tensor ε(v), whose components
are εij(v) = (∂vi/∂xj + ∂vj/∂xi)/2 for all i, j ∈ {1, 2, 3}, and Dv means the difference between
the traces of v on Λ We consider also the material density ρ ∈ L∞(Ω) and the mass damping
factor α ∈ L∞(Ω); its implementation brings some energy dissipation during the strain and stress
development into account even in the case i): we cannot have a closed physical system in practice.
It is natural to expect u ∈ W 2,2,2,2(I, V,H, V ?) again.

Clearly (19) must be supplied by some constitutive equations for still undefined stresses σ on Ω
and surface tractions T on Λ. Let us notice that for the case i) without any active cohesive interface
Λ we can have still a linear problem, working with the empirical Hooke law σ = Cε(u) where
C ∈ L∞(Ω)

(3×3)×(3×3)
sym ; thus C contains (in general) 21 independent parameters, reducible to the

pair of the well-known Lamé coefficients (or to the Young modulus and the Poisson ratio) for
any isotropic medium. Such problem could be handled using the standard arguments from [28]
and [29]. To incorporate ii), let us take (1 −D)C instead of C in the strain - stress relation where
0 ≤ D ≤ D∗; the prescribed upper bound D∗ must be lesser than 1 (to avoid iv)). The most delicate
step is now the evaluation of D: working with the triple of principal stresses σ1, σ2 and σ3 (to
guarantee the objectivity), coming from the condition det(σ−σiI) = 0 where i ∈ {1, 2, 3}, I being
the unit matrix of order 3, we are able to evaluate their nonlocal values σ∗i (x) =

∫
Ω
K(x, x̃)σi(x̃) dx̃,

applying an appropriate regularization kernel K, taking σ∗1 , σ∗2 and σ∗3 as inputs for certain bounded
continuous function ω(σ∗1, σ

∗
2, σ

∗
3), we are able to set, in any time t ∈ I, the factor D locally as

the maximum of values of ω over all times t̃ ∈ [0, t] (to respect the irreversibility of damage).
To incorporate iii), we need, moreover, some continuous and bounded cohesive function ς(Dv),
accepting all above mentioned traces, to be able to evaluate T = ς(Du). Thus, understanding D
here as D(u), representing a very complicated function of u, from (19) we receive

(v, ρü) + (v, αρu̇) + ((ε(v), (1−D)Cε(u))) = (v, f) + 〈v, g〉+ 〈Dv, ς(Du)〉∗ . (20)

The time-discretized version of (20), analogous to (16), then reads

(v, ρ(us − 2us−1 + us−2)) + δ(v, αρ(us − us−1)) + δ2((ε(v), (1−D∗s)Cε(us)))

= δ2(v, fs) + δ2〈v, gs〉+ δ2〈Dv, ς(Du∗s)〉∗ (21)

for particular steps s ∈ {1, . . . , n}; we have u0 = o and u−1 for the first step can be set using
u−1 = u1 − 2δû0. In the nonlinear terms by ii) and iii) us are replaced by u∗s, which can be taken
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as us−1 for the first guess, which can start the iterative process for each fixed s ∈ {1, . . . , n}. The
reformulation of (21) in Vh instead of V seems to be straightforward, but the realistic analysis of
crack development requires non-trivial X-FEM mesh refinement steps beyond the scope of this
paper.

Fig. 4 The stress development in a cement-based composite structure with the metal fibre
reinforcement, performed by the XFEM-based user-defined procedure in the Abaqus software,

using the computational model, suggested by J. Mazars (2001).

Although the computational scheme (21) is not quite easy, it needs further improvements for practi-
cal implementations. Firstly, a more advanced dissipation scheme is required, combining the mass
damping with the structural one, derived from the parallel Kelvin viscoelastic model, as presented
by [53] (for the quasi-static case) and [54] (for the fully dynamic case). Secondly, the reasonable
prediction of strain and stress redistributions in cement-based composites needs a more-parameter
evaluation damage to distinguish between tension and compression; one rather simple model was
suggested by J. Mazars (2001) in [55]. Fig. 4 documents such computational modelling for a sim-
ple plane structure. Nevertheless, further generalizations are needed for fast dynamical processes,
as i) an advanced remeshing in particular time steps to suppress the effects of linearization, ii)
replacement of (21) by a (at least conditionally stable) explicit computational scheme to avoid
long iterations, together with the proper analysis of energy dissipation on contacts of multiple de-
formable bodies, as introduced by [56] in details, and iii) an effective contact detection, based on
the results from the graph theory, forcing distributed and parallel computing platforms, suggested
by [57].

CONCLUSION

The approximately 70 years of the FEM-based engineering computations and 55 years of the math-
ematical theory of FEM demonstrated its excellent properties and wide applicability, even beyond
the scope of physical and engineering problems, sketched in this paper, and its ability to collabo-
rate with numerous different numerical approaches in problem-oriented computations. Most com-
mercial software packages of several last decades use FEM as their primary choice. The future
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potential of the traditional FEM, or the dominance of some seemingly concurrent method, derived
from FEM, or the assertion of a quite new method, as FEM instead of FDM at the beginning of
the history discussed in this paper, depends on the success of its unified theoretical and numerical
analysis for strongly nonlinear multiphysical problems, as the crucial research challenge for the
near future.
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metodou konečných prvků. Prague: SNTL, 1979.
[27] Melkes, F. Reduced piecewise bivariate Hermite interpolations. Numerische Mathematik

19 (1972), p. 320-340.
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RAIRO Modélisation mathématique et analyse numérique 21 (1987), p. 199-238.
[34] Chen, X., Yang, S., Ma, J., He, Z. The construction of wavelet finite element and its applica-

tion. Finite Elements in Analysis and Design 40 (2004), p. 541-554.
[35] Melenk, J. M., Babuka, I. The partition of unity finite element method: basic theory and

applications. Computer Methods in Applied Mechanics and Engineering 139 (1996), p. 289-
314.
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[48] Feireisl, E., Novotný, A. Two phase flows of compressible viscous fluids. Discrete and Con-
tinuous Dynamical Systems 15 (2022), p. 2215-2232.
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